A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge.
View Article and Find Full Text PDFDrosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied.
View Article and Find Full Text PDFA small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.
View Article and Find Full Text PDFAdult Drosophila melanogaster has long been a popular model for learning and memory studies. Now the larval stage of the fruit fly is also being used in an increasing number of classical conditioning studies. In this study, we employed heat shock as a novel negative reinforcement for larvae and obtained high learning scores following just one training trial.
View Article and Find Full Text PDFThe intermolecular spectra of three imidazolium ionic liquids were studied as a function of temperature by the use of optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The ionic liquids comprise the 1,3-pentylmethylimidazolium cation ([C(5)mim]+), and the anions, bromide (Br-), hexafluorophosphate (PF(6)-), and bis(trifluoromethanesulfonyl)imide (NTf(2)-). Whereas the optical Kerr effect (OKE) spectrum of [C(5)mim][NTf(2)] is temperature-dependent, the OKE spectra of [C(5)mim]Br and [C(5)mim][PF6] are temperature-independent.
View Article and Find Full Text PDF