Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes.
View Article and Find Full Text PDFObjectives: Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection.
Methods: We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes.
CDKL5 Deficiency Disorder (CDD) is a rare X-linked monogenic developmental encephalopathy that is estimated to affect 1:42,000 live births. CDD is caused by pathogenic variants in the CDKL5 gene and is observed in both male and female patients. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from fibroblasts of six unrelated CDD patients-three males and three females.
View Article and Find Full Text PDF