Publications by authors named "Amanda C Drennan"

Article Synopsis
  • - Centrosomes and spindle pole bodies (SPBs) are crucial for forming bipolar mitotic spindles during cell division, and understanding their protein structures helps us learn how cell division is regulated.
  • - Spc42 is a key protein at the SPB, featuring a dimeric coiled-coil structure that assembles into a hexamer, acting as a scaffold for SPB development.
  • - Recent findings reveal additional coiled-coil structures in Spc42, contributing to its assembly and organization, leading to a proposed model that explains the symmetrical lattice formation essential for SPB function in yeast.
View Article and Find Full Text PDF

STAT3 is constitutively activated in many cancers and regulates gene expression to promote cancer cell survival, proliferation, invasion, and migration. In diffuse large B cell lymphoma (DLBCL), activation of STAT3 and its kinase JAK1 is caused by autocrine production of IL-6 and IL-10 in the activated B cell-like subtype (ABC). However, the gene regulatory mechanisms underlying the pathogenesis of this aggressive lymphoma by STAT3 are not well characterized.

View Article and Find Full Text PDF

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is central to signaling by receptors of diverse cytokines, growth factors, and other related molecules. Many of these receptors transmit anti-apoptosis, proliferation, and differentiation signals that are critical for normal hematopoiesis and immune response. However, the JAK/STAT signaling pathway is deregulated in many hematologic malignancies, and as such is co-opted by malignant cells to promote their survival and proliferation.

View Article and Find Full Text PDF

Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown.

View Article and Find Full Text PDF

In transcription initiation by Escherichia coli RNA polymerase (RNAP), initial binding to promoter DNA triggers large conformational changes, bending downstream duplex DNA into the RNAP cleft and opening 13bp to form a short-lived open intermediate (I2). Subsequent conformational changes increase lifetimes of λPR and T7A1 open complexes (OCs) by >10(5)-fold and >10(2)-fold, respectively. OC lifetime is a target for regulation.

View Article and Find Full Text PDF