Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2019
Purpose: Regeneration of optic nerve axons after injury can be facilitated by several approaches, but misguidance at the optic chiasm is often observed. We characterized guidance cues in the embryonic visual system and adult optic chiasm before and after optic nerve crush (ONC) injury to better understand barriers to optic nerve regeneration in adults.
Methods: Radial glial (RC2/BLBP/Slit1), developmental (Pax2) and extracellular markers (CSPG: H2B/CS-56) were assessed in C57BL/6J mice by immunohistochemistry.
Previous studies have demonstrated that intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury. BDNF gene therapy can improve RGC survival in experimental models of glaucoma, the leading cause of irreversible blindness worldwide. However, the therapeutic efficacy of BDNF supplementation alone is time limited at least in part due to BDNF receptor downregulation.
View Article and Find Full Text PDFThe failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, growth-permissive motifs.
View Article and Find Full Text PDFHuman vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells.
View Article and Find Full Text PDFOver the last decade, a large number of research articles have been published demonstrating regeneration and/or neuroprotection of retinal ganglion cells following manipulation of specific genetic and molecular targets. Interestingly, of the targets that have been identified to promote repair following visual system damage, many are genes known to be mutated in different types of cancer. This review explores recent literature on the potential for modulating cancer genes as a therapeutic strategy for visual system repair and looks at the potential clinical challenges associated with implementing this type of therapy.
View Article and Find Full Text PDFA variety of diseases lead to degeneration of retinal ganglion cells (RGCs) and their axons within the optic nerve resulting in loss of visual function. Although current therapies may delay RGC loss, they do not restore visual function or completely halt disease progression. Regenerative medicine has recently focused on stem cell therapy for both neuroprotective and regenerative purposes.
View Article and Find Full Text PDFDespite different aetiologies, most inherited retinal disorders culminate in photoreceptor loss, which induces concomitant changes in the neural retina, one of the most striking being reactive gliosis by Müller cells. It is typically assumed that photoreceptor loss leads to an upregulation of glial fibrilliary acidic protein (Gfap) and other intermediate filament proteins, together with other gliosis-related changes, including loss of integrity of the outer limiting membrane (OLM) and deposition of proteoglycans. However, this is based on a mix of both injury-induced and genetic causes of photoreceptor loss.
View Article and Find Full Text PDFVision loss caused by the death of photoreceptors is the leading cause of irreversible blindness in the developed world. Rapid advances in stem cell biology and techniques in cell transplantation have made photoreceptor replacement by transplantation a very plausible therapeutic strategy. These advances include the demonstration of restoration of vision following photoreceptor transplantation and the generation of transplantable populations of donor cells from stem cells.
View Article and Find Full Text PDFRetinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
Despite different aetiologies, age-related macular degeneration and most inherited retinal disorders culminate in the same final common pathway, the loss of photoreceptors. There are few treatments and none reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations.
View Article and Find Full Text PDFStem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined.
View Article and Find Full Text PDF