Publications by authors named "Amanda Balboni"

Unlabelled: The TGFβ superfamily regulates a broad range of cellular processes, including proliferation, cell-fate specification, differentiation, and migration. Molecular mechanisms underlying this high degree of pleiotropy and cell-type specificity are not well understood. The TGFβ family is composed of two branches: (i) TGFβs, activins, and nodals, which signal through SMAD2/3, and (ii) bone morphogenetic proteins (BMP), which signal through SMAD1/5/8.

View Article and Find Full Text PDF

ΔNP63α, the predominant TP63 isoform expressed in diverse epithelial tissues, including the mammary gland, is required for the preservation of stem cells and has been implicated in tumorigenesis and metastasis. Despite data characterizing ΔNP63α as a master regulator of stem cell activity, identification of the targets underlying these effects is incompletely understood. Recently, ΔNP63α was identified as a key regulator in the promotion of proinflammatory programs in squamous cell carcinoma of the head and neck.

View Article and Find Full Text PDF

Background: Transforming growth factor beta (TGFβ) is transiently increased in the mammary gland during involution and by radiation. While TGFβ normally has a tumour suppressor role, prolonged exposure to TGFβ can induce an oncogenic epithelial to mesenchymal transition (EMT) program in permissive cells and initiate the generation of cancer stem cells. Our objective is to mimic the transient exposure to TGFβ during involution to determine the persistent effects on premalignant mammary epithelium.

View Article and Find Full Text PDF

Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of regenerative stasis within diverse epithelial tissues. In squamous carcinomas, TP63 is commonly amplified, and ΔNp63α confers a potent survival advantage. Genome-wide occupancy studies show that ΔNp63 promotes bidirectional target gene regulation by binding more than 5,000 sites throughout the genome; however, the subset of targets mediating discreet activities of TP63 remains unclear.

View Article and Find Full Text PDF

Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood.

View Article and Find Full Text PDF

Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of self-renewing capacity in the stem cell compartments of diverse epithelial structures; however, the underlying cellular and molecular mechanisms remain incompletely defined. Cellular quiescence is a common feature of adult stem cells that may account for their ability to retain long-term replicative capacity while simultaneously limiting cellular division. Similarly, quiescence within tumor stem cell populations may represent a mechanism by which these populations evade cytotoxic therapy and initiate tumor recurrence.

View Article and Find Full Text PDF