Publications by authors named "Amanda B Graves"

Mycobacterium tuberculosis MhuD catalyzes the oxygenation of heme to mycobilin; experimental data presented here elucidates the novel hydroxylation reaction catalyzed by this enzyme. Analogues for the critical ferric-hydroperoxoheme (MhuD-heme-OOH) intermediate of this enzyme were characterized using UV/Vis absorption (Abs), circular dichroism (CD), and magnetic CD (MCD) spectroscopies. In order to extract electronic transition energies from these spectroscopic data, a novel global fitting model was developed for analysis of UV/Vis Abs, CD, and MCD data.

View Article and Find Full Text PDF

The noncanonical heme oxygenase MhuD from binds a heme substrate that adopts a dynamic equilibrium between planar and out-of-plane ruffled conformations. MhuD degrades this substrate to an unusual mycobilin product via successive monooxygenation and dioxygenation reactions. This article establishes a causal relationship between heme substrate dynamics and MhuD-catalyzed heme degradation, resulting in a refined enzymatic mechanism.

View Article and Find Full Text PDF

MhuD is a protein found in mycobacteria that can bind up to two heme molecules per protein monomer and catalyze the degradation of heme to mycobilin in vitro. Here the Kd1 for heme dissociation from heme-bound MhuD was determined to be 7.6 ± 0.

View Article and Find Full Text PDF

Correction for 'Dynamic ruffling distortion of the heme substrate in non-canonical heme oxygenase enzymes' by Amanda B. Graves et al., Dalton Trans.

View Article and Find Full Text PDF

Recent work by several groups has established that MhuD, IsdG, and IsdI are non-canonical heme oxygenases that induce significant out-of-plane ruffling distortions of their heme substrates enroute to mycobilin or staphylobilin formation. However, clear explanations for the observations of "nested" S = ½ VTVH MCD saturation magnetization curves at cryogenic temperatures, and exchange broadened (1)H NMR resonances at physiologically-relevant temperatures have remained elusive. Here, MCD and NMR data have been acquired for F23A and F23W MhuD-heme-CN, in addition to MCD data for IsdI-heme-CN, in order to complete assembly of a library of spectroscopic data for cyanide-inhibited ferric heme with a wide range of ruffling deformations.

View Article and Find Full Text PDF

For decades it has been known that an out-of-plane ruffling distortion of heme perturbs its UV-vis absorption (Abs) spectrum, but whether increased ruffling induces a red or blue shift of the Soret band has remained a topic of debate. This debate has been resolved by the spectroscopic and computational characterization of Mycobacterium tuberculosis MhuD presented here, an enzyme that converts heme, oxygen, and reducing equivalents to nonheme iron and mycobilin. W66F and W66A MhuD have been characterized using (1)H nuclear magnetic resonance, Abs, and magnetic circular dichroism spectroscopies, and the data have been used to develop an experimentally validated theoretical model of ruffled, ferric heme.

View Article and Find Full Text PDF

Mycobacterium heme utilization degrader (MhuD) is a heme-degrading protein from Mycobacterium tuberculosis responsible for extracting the essential nutrient iron from host-derived heme. MhuD has been previously shown to produce unique organic products compared to those of canonical heme oxygenases (HOs) as well as those of the IsdG/I heme-degrading enzymes from Staphylococcus aureus. Here, we report the X-ray crystal structure of cyanide-inhibited MhuD (MhuD-heme-CN) as well as detailed (1)H nuclear magnetic resonance (NMR), UV/vis absorption, and magnetic circular dichroism (MCD) spectroscopic characterization of this species.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: