Many insects vary their song patterns to communicate different messages, but the underlying biomechanisms are often poorly understood. Here, we report on the mechanics of sound production and variation in an elytro-tergal stridulator, male bark beetles. Using ablation experiments coupled with high-speed video and audio recordings, we show that: (1) chirps are produced using a stridulatory file on the left elytron (forewing) and a protrusion (plectrum) on the seventh abdominal segment; (2) chirps are produced by 'spring stridulation', a catch-and-release mechanism whereby the plectrum catches on a file tooth and, upon release, springs forward along the file; and (3) variability in chirp types is caused by introducing multiple catch-and-release events along the file to create regular interruptions.
View Article and Find Full Text PDFAcoustic signals are commonly used by insects in the context of mating, and signals can vary depending on the stage of interaction between a male and female. While calling songs have been studied extensively, particularly in the Orthoptera, much less is known about courtship songs. One outstanding question is how potential mates are differentiated by their courtship signal characteristics.
View Article and Find Full Text PDFProtein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium.
View Article and Find Full Text PDF