Microtubules (MTs) are observed to move and buckle driven by ATP-dependent molecular motors in both mitotic and interphasic eukaryotic cells as well as in specialized structures such as flagella and cilia with a stereotypical geometry. In previous work, clamped MTs driven by a few kinesin motors were seen to buckle and occasionally flap in what was referred to as flagella-like motion. Theoretical models of active-filament dynamics and a following force have predicted that, with sufficient force and binding-unbinding, such clamped filaments should spontaneously undergo periodic buckling oscillations.
View Article and Find Full Text PDFLung cancer is one of the most invasive cancers affecting over a million of the population. Non-small cell lung cancer (NSCLC) constitutes up to 85% of all lung cancer cases, and therefore, it is essential to identify predictive biomarkers of NSCLC for therapeutic purposes. Here we use a network theoretical approach to investigate the complex behavior of the NSCLC gene-regulatory interactions.
View Article and Find Full Text PDF