Publications by authors named "Aman Asif-Malik"

Article Synopsis
  • Identifying early events in neurodegenerative disorders, like Huntington's disease (HD), is essential for creating preventive treatments, particularly focusing on the role of dysfunctional indirect pathway spiny projection neurons (iSPNs) and increased dopamine levels.
  • The study reveals that genetic disruption of iSPN function in mice leads to heightened levels of striatal dopamine, potentially causing early symptoms like hyperkinesia, before observable dysfunction occurs.
  • By analyzing iSPNs, researchers found that reducing the protein GSTO2 could prevent dopaminergic issues and delay hyperkinetic symptoms, highlighting the significance of maintaining dopamine balance in HD progression.
View Article and Find Full Text PDF

Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions.

View Article and Find Full Text PDF

Recent evidence suggests that the trace amine-associated receptor 1 (TAAR1) plays a pivotal role in the regulation of dopamine (DA) transmission and cocaine's actions. However, the underlying mechanisms through which TAAR1 activation mediates these effects have not yet been elucidated. Here, we used fast-scan cyclic voltammetry to measure DA dynamics and explore such mechanisms.

View Article and Find Full Text PDF

Addiction is characterised by cycles of compulsive drug taking, periods of abstinence and episodes of relapse. The extinction/reinstatement paradigm has been extensively used in rodents to model human relapse and explore underlying mechanisms and therapeutics. However, relapse to drug seeking behaviour has not been previously demonstrated in invertebrates.

View Article and Find Full Text PDF

The neural mechanisms underlying cognitive deficits in schizophrenia are poorly understood. Sub-chronic treatment with the NMDA antagonist phencyclidine (PCP) produces cognitive abnormalities in rodents that reliably model aspects of the neurocognitive alterations observed in schizophrenia. Given that network activity across regions encompassing medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) plays a significant role in motivational and cognitive tasks, we measured activity across cortico-striatal pathways in PCP-treated rats to characterize neural enabling and encoding of task performance in a novel object recognition task.

View Article and Find Full Text PDF

Recent evidence suggests that the trace amine-associated receptor 1 (TAAR1) plays a pivotal role in the regulation of dopamine (DA) transmission and psychostimulant action. Several selective TAAR1 agonists have previously shown efficacy in models of cocaine addiction. However, the effects of TAAR1 activation on methamphetamine (METH)-induced behaviours are less well understood, as indeed are the underlying neurochemical mechanisms mediating potential interactions between TAAR1 and METH.

View Article and Find Full Text PDF

Biogenic amines are a collection of endogenous molecules that play pivotal roles as neurotransmitters and hormones. In addition to the "classical" biogenic amines resulting from decarboxylation of aromatic acids, including dopamine (DA), norepinephrine, epinephrine, serotonin (5-HT), and histamine, other biogenic amines, present at much lower concentrations in the central nervous system (CNS), and hence referred to as "trace" amines (TAs), are now recognized to play significant neurophysiological and behavioral functions. At the turn of the century, the discovery of the trace amine-associated receptor 1 (TAAR1), a phylogenetically conserved G protein-coupled receptor that is responsive to both TAs, such as β-phenylethylamine, octopamine, and tyramine, and structurally-related amphetamines, unveiled mechanisms of action for TAs other than interference with aminergic pathways, laying the foundations for deciphering the functional significance of TAs and its mammalian CNS receptor, TAAR1.

View Article and Find Full Text PDF