ACS Appl Mater Interfaces
February 2021
Renewable polymers with excellent stretchability and self-healing ability are interesting for a wide range of applications. A novel type of wholly biobased, self-healing, polyamide-based thermoplastic elastomer was synthesized using a fatty dimer acid and a fatty dimer amine, both containing multiple alkyl chains, through facile one-pot condensation polymerization under different polymerization times. The resulting elastomer shows superior stretchability (up to 2286%), high toughness, and excellent shape recovery after being stretched to different strains.
View Article and Find Full Text PDFPolyacrylonitrile (PAN) fibers containing various concentrations of graphene nanoplatelets (GNPs) were prepared by pressurized gyration, and carbon nanofibers (CNFs) were obtained after subsequent heat treatment and spark plasma sintering (SPS). The influence of processing parameters such as rotational speed, working pressure, carbonization, and SPS temperature on the diameter of the nanofibers has been studied. Furthermore, the thermal properties, morphologies, and crystallization properties of the CNFs have been investigated by using thermogravimetry, scanning and transmission electron microscopy, and Raman spectroscopy.
View Article and Find Full Text PDF