Publications by authors named "Amalia Aggeli"

Batch fermentations of the wild type Yarrowia lipolytica MUCL 28849 were performed in a bench-top bioreactor to assess crucial operating conditions. A setup of carbon to nitrogen (mol/mol) ratio equal to 34, pH = 6.0 and 52 g/L of crude glycerol showed increased lipid production and complete glycerol consumption at t = 24 h, thus, selected for further process improvement.

View Article and Find Full Text PDF
Article Synopsis
  • Fetal lung development is a critical process that affects respiratory health after birth, and disruptions can lead to disorders that impact both neonatal and adult health.
  • Recent studies highlight a link between fetal lung disorders and the development of diseases in adulthood, offering insights into why certain health issues arise later in life.
  • The article explores various stages of fetal lung development, specific disorders like respiratory distress syndrome and congenital diaphragmatic hernia, and the possible mechanisms behind these associations, emphasizing the need for targeted preventive measures and ongoing research.
View Article and Find Full Text PDF

Τransforming growth factor β1 (TGF-β1) comprises a key regulator protein in many cellular processes, including in vivo chondrogenesis. The treatment of human dental pulp stem cells, separately, with Leu-Ser (C-terminal domain of TGF-β1), as well as two very short peptides, namely, 90-YYVGRKPK-97 (peptide 8) and 91-YVGRKP-96 (peptide 6) remarkably enhanced the chondrogenic differentiation capacity in comparison to their full-length mature TGF-β1 counterpart either in monolayer cultures or 3D scaffolds. In 3D scaffolds, the reduction of the elastic modulus and viscous modulus verified the production of different amounts and types of ECM components.

View Article and Find Full Text PDF

The regeneration of articular cartilage remains a serious problem in various pathological conditions such as osteoarthritis, due to the tissue's low self-healing capacity. The latest therapeutic approaches focus on the construction of biomaterials that induce cartilage repair. This research describes the design, synthesis, and investigation of a safe, "smart", fibrous scaffold containing a genetically incorporated active peptide for chondrogenic induction.

View Article and Find Full Text PDF

This paper presents a systematic review of a key sector of the much promising and rapidly evolving field of biomedical engineering, specifically on the fabrication of three-dimensional open, porous collagen-based medical devices, using the prominent freeze-drying process. Collagen and its derivatives are the most popular biopolymers in this field, as they constitute the main components of the extracellular matrix, and therefore exhibit desirable properties, such as biocompatibility and biodegradability, for in vivo applications. For this reason, freeze-dried collagen-based sponges with a wide variety of attributes can be produced and have already led to a wide range of successful commercial medical devices, chiefly for dental, orthopedic, hemostatic, and neuronal applications.

View Article and Find Full Text PDF

This work describes the design, preparation, and deep investigation of "intelligent nanobiomaterials" that fulfill the safety rules and aim to serve as "signal deliverers" for osteogenesis, harboring a specific peptide that promotes and enhances osteogenesis at the end of their hydrogel fibers. The de novo synthesized protein fibers, besides their mechanical properties owed to their protein constituents from elastin, silk fibroin and mussel-foot adhesive protein-1 as well as to cell-attachment peptides from extracellular matrix glycoproteins, incorporate the Bone Morphogenetic Protein-2 (BMP2) peptide (AISMLYLDEN) that, according to our studies, serves as "signal deliverer" for osteogenesis. The osteogenetic capacity of the biomaterial has been evidenced by investigating the osteogenic marker genes , , , , , and , which were increased drastically in cells cultured on scaffold-BMP2 for 21 days, even in the absence of osteogenesis medium.

View Article and Find Full Text PDF

Background: Yarrowia lipolytica is a well-studied oleaginous yeast known for its ability to accumulate and store intracellular lipids, while growing on diverse, non-conventional substrates. Amongst them, crude glycerol, a low-cost by-product of the biodiesel industry, appears to be an interesting option for scaling up a sustainable single-cell oil production process. Adaptive laboratory evolution (ALE) is a powerful tool to force metabolic adaptations endowing tolerance to stressful environmental conditions, generating superior phenotypes with industrial relevance.

View Article and Find Full Text PDF

Objective: To determine whether differences existed in the viscoelastic properties of synovial fluid samples from the metacarpophalangeal, intercarpal, and distal interphalangeal joints of orthopedically normal athletic horses.

Animals: 45 warmblood horses and 30 Thoroughbreds (age range, 4 to 16 years).

Procedures: Synovial fluid samples were aseptically obtained via arthrocentesis from 1 metacarpophalangeal, intercarpal, and distal interphalangeal joint of each horse, and nucleated cell counts were performed.

View Article and Find Full Text PDF

Tissue engineered therapies are emerging as solutions to several of the medical challenges facing aging societies. To this end, a fundamental research goal is the development of novel biocompatible materials and scaffolds. Self-assembling peptides are materials that have undergone rapid development in the last two decades and they hold promise in meeting some of these challenges.

View Article and Find Full Text PDF

Rational molecular design of self- assembling peptide-based materials that spontaneously form self-supporting hydrogels shows potential in many healthcare applications. Binary peptides based on complementary charged sequences are developed, and the use of biophysical analysis and cell-based studies highlights that the charged interactions can influence the properties of peptide materials and ultimately affect biomaterial applications.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF

Amphiphilic β-sheet nanotapes based on the self-assembly of 9mer and 7mer de novo designed β-strand peptides were studied in the dilute regime. The hydrophobic face of the tapes consisted predominantly of aliphatic (leucine) side chains, while the hydrophilic tape face contained polar side chains (glutamine, arginine and glutamic acid). Both peptides underwent a transition from a monomeric random coil to a self-assembled β-sheet tape upon increase of peptide concentration in aqueous solutions.

View Article and Find Full Text PDF

Synthetic nanostructures based on self-assembling systems that aim to mimic natural extracellular matrix are now being used as substrates in tissue engineering applications. Peptides are excellent starting materials for the self-assembly process as they can be readily synthesised both chemically and biologically. P₁₁-4 is an 11 amino acid peptide that undergoes triggered self-assembly to form a self-supporting hydrogel.

View Article and Find Full Text PDF

Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes.

View Article and Find Full Text PDF

Studies of beta-sheet peptide/phospholipid interactions are important for an understanding of the folding of beta-sheet-rich membrane proteins and the action of antimicrobial and toxic peptides. Further, self-assembling peptides have numerous applications in medicine and therefore an insight is required into the relation between peptide molecular structure and biomembrane activity. We previously developed one of the simplest known model peptide systems which, above a critical concentration (c*) in solution, undergoes nucleated one-dimensional self-assembly from a monomeric random coil into a hierarchy of well defined beta-sheet structures.

View Article and Find Full Text PDF

Peptide P(11)-4 (QQRFEWEFEQQ) was designed to self-assemble to form beta-sheets and nematic gels in the pH range 5-7 at concentrations > or =12.6 mM in water. This self-assembly is reversibly controlled by adjusting the pH of the solvent.

View Article and Find Full Text PDF

The production of bone-, dentine- and enamel-like biomaterials for the engineering of mineralized (hard) tissues is a high-priority in regenerative medicine and dentistry. An emerging treatment approach involves the use of short biomimetic peptides that self-assemble to form micrometer-long nanofibrils with well defined surface chemistry and periodicity that display specific arrays of functional groups capable of mineral nucleation. The fibrils also give rise to dynamically stable 3D scaffold gels for the potential control of crystal disposition and growth.

View Article and Find Full Text PDF

The self-assembly of peptides is explored as an alternative route towards the development of new injectable joint lubricants for osteoarthritis (OA). The versatility of the peptide chemistry allows the incorporation of behavior reminiscent of hyaluronic acid (HA), while the triggered in situ self-assembly provides easy delivery of the samples by injection due to the low viscosity of the peptide solutions (that are initially monomeric). Using design criteria based on the chemical properties of HA, a range of de novo peptides were prepared with systematic alterations of charge and hydrophilicity that self-assembled into nematic fluids and gels in physiological solution conditions.

View Article and Find Full Text PDF

Energy migration between tryptophan residues has been experimentally demonstrated in self-assembled peptide tapes. Each peptide contains 11 amino acids with a Trp at position 6. The peptide self-assembly is pH-sensitive and forms amphiphilic tapes, which further stack in ribbons (double tapes) and fibrils in water depending on the concentration.

View Article and Find Full Text PDF

The hierarchical self-assembly of rationally designed synthetic peptides into beta-sheet tapes, ribbons, fibrils, and fibers opens up potentially useful routes to soft-solidlike materials such as hydrogels, organogels, or liquid crystals. Here, it is shown how incorporation of Glu (-CH(2)CH(2)COOH) or Orn (-CH(2)CH(2)CH(2)NH(2)) into the primary structure of an 11 amino acid peptide enables self-assembly to be rapidly (seconds) and reversibly controlled by simply changing pH. Solutions of monomeric peptide, typically at concentrations in excess of 0.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Amalia Aggeli"

  • - Amalia Aggeli's research spans a range of biomedical applications, emphasizing the development of novel biomaterials, particularly through the use of peptides and collagen-based scaffolds for tissue engineering and regenerative medicine.
  • - Recent studies highlight the influence of fetal lung development disorders on adult diseases, and the innovative use of biomaterials to promote chondrogenesis and osteogenesis, showcasing her work on smart scaffolds that deliver growth factors effectively for cartilage and bone regeneration.
  • - Additionally, her research includes the exploration of using Yarrowia lipolytica for sustainable lipid production and quantitative studies of synovial fluid properties in horses, indicating a broad focus on both human health applications and veterinary medicine.