There is wide variability in the propensity of somatic cells to reprogram into pluripotency in response to the Yamanaka factors. How to segregate these variabilities to enrich for cells of specific traits that reprogram efficiently remains challenging. Here we report that the variability in reprogramming propensity is associated with the activity of the MKL1/SRF transcription factor and concurs with small cell size as well as rapid cell cycle.
View Article and Find Full Text PDFCell proliferation changes concomitantly with fate transitions during reprogramming, differentiation, regeneration, and oncogenesis. Methods to resolve cell cycle length heterogeneity in real time are currently lacking. Here, we describe a genetically encoded fluorescent reporter that captures live-cell cycle speed using a single measurement.
View Article and Find Full Text PDFYes-associated protein (YAP) is known to promote the stemness of multiple stem cell types, including pluripotent stem cells, while also antagonizing pluripotency during early embryogenesis. How YAP accomplishes these distinct functions remains unclear. Here, we report that, depending on the specific cells in which it is expressed, YAP could exhibit opposing effects on pluripotency induction from mouse somatic cells.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCancer is a hyper-proliferative disease. Whether the proliferative state originates from the cell-of-origin or emerges later remains difficult to resolve. By tracking de novo transformation from normal hematopoietic progenitors expressing an acute myeloid leukemia (AML) oncogene MLL-AF9, we reveal that the cell cycle rate heterogeneity among granulocyte-macrophage progenitors (GMPs) determines their probability of transformation.
View Article and Find Full Text PDFActin cytoskeleton is well-known for providing structural/mechanical support, but whether and how it regulates chromatin and cell fate reprogramming is far less clear. Here, we report that MKL1, the key transcriptional co-activator of many actin cytoskeletal genes, regulates genomic accessibility and cell fate reprogramming. The MKL1-actin pathway weakens during somatic cell reprogramming by pluripotency transcription factors.
View Article and Find Full Text PDFA close relationship between proliferation and cell fate specification has been well documented in many developmental systems. In addition to the gradual cell fate changes accompanying normal development and tissue homeostasis, it is now commonly appreciated that cell fate could also undergo drastic changes, as illustrated by the induction of pluripotency from many differentiated somatic cell types during the process of Yamanaka reprogramming. Strikingly, the drastic cell fate change induced by Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) is preceded by extensive cell cycle acceleration.
View Article and Find Full Text PDF