Publications by authors named "Amala Kaja"

An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications.

View Article and Find Full Text PDF

Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans.

View Article and Find Full Text PDF

Proteins are expressed from genes via sequential biological processes of transcription, mRNA processing, export and translation, and play their roles in maintaining cellular functions via interactions with proteins, DNAs or RNAs. Thus, it is important to study the protein interactions during biological processes in living cells towards understanding their mechanisms-of-action in real time. Methodologies have been developed over the years to study protein interactions in vivo.

View Article and Find Full Text PDF

Isolation of a protein/complex is important for its biochemical and structural characterization with mechanistic insights. TAP (tandem affinity purification) strategy allows rapid isolation of cellular proteins/complexes with a high level of purity. This methodology involves an immuno-affinity-based purification followed by a conformation-based isolation to obtain a highly homogeneous protein/complex.

View Article and Find Full Text PDF

Ataxin-7 maintains the integrity of Spt-Ada-Gcn5-Acetyltransferase (SAGA), an evolutionarily conserved coactivator in stimulating preinitiation complex (PIC) formation for transcription initiation, and thus, its upregulation or downregulation is associated with various diseases. However, it remains unknown how ataxin-7 is regulated that could provide new insights into disease pathogenesis and therapeutic interventions. Here, we show that ataxin-7's yeast homologue, Sgf73, undergoes ubiquitylation and proteasomal degradation.

View Article and Find Full Text PDF

San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in the genome-wide association of TATA box binding protein (TBP; which nucleates preinitiation complex [PIC] formation for transcription initiation) and RNA polymerase II (Pol II).

View Article and Find Full Text PDF

FACT (cilitates hromatin ranscription), an essential and evolutionarily conserved heterodimer from yeast to humans, controls transcription and is found to be upregulated in various cancers. However, the basis for such upregulation is not clearly understood. Our recent results deciphering a new ubiquitin-proteasome system regulation of the FACT subunit SPT16 in orchestrating transcription in yeast hint at the involvement of the proteasome in controlling FACT in humans, with a link to cancer.

View Article and Find Full Text PDF

Although an F-box protein, Mdm30, is found to regulate ubiquitylation of the Sub2 component of TREX (anscription-port) complex for proteasomal degradation in stimulation of mRNA export, it remains unknown whether such ubiquitin-proteasome system (UPS) regulation of Sub2 occurs cotranscriptionally via its interaction with Mdm30. Further, it is unclear whether impaired UPS regulation of Sub2 in the absence of Mdm30 alters mRNA export via splicing defects of export factors and/or mitochondrial dynamics/function, since Sub2 controls mRNA splicing and Mdm30 regulates mitochondrial aggregation. Here, we show that Mdm30 interacts with Sub2, and temporary shutdown of Mdm30 enhances Sub2's abundance and impairs mRNA export.

View Article and Find Full Text PDF

Cap-binding complex (CBC) associates cotranscriptionally with the cap structure at the 5' end of nascent mRNA to protect it from exonucleolytic degradation. Here, we show that CBC promotes the targeting of an mRNA export adaptor, Yra1 (forming transcription export [TREX] complex with THO and Sub2), to the active genes and enhances mRNA export in Likewise, recruitment of Npl3 (an hnRNP involved in mRNA export via formation of export-competent ribonuclear protein complex [RNP]) to the active genes is facilitated by CBC. Thus, CBC enhances targeting of the export factors and promotes mRNA export.

View Article and Find Full Text PDF

TOR (target of rapamycin) has been previously implicated in transcriptional stimulation of the ribosomal protein (RP) genes via enhanced recruitment of NuA4 (nucleosome acetyltransferase of H4) to the promoters. However, it is not clearly understood how TOR enhances NuA4 recruitment to the promoters of the RP genes. Here we show that TOR facilitates the recruitment of the 19S proteasome subcomplex to the activator to enhance the targeting of NuA4 to the promoters of the RP genes.

View Article and Find Full Text PDF

SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (transcription factor IID) have been previously shown to facilitate the formation of the PIC (pre-initiation complex) at the promoters of two distinct sets of genes. Here, we demonstrate that TFIID and SAGA differentially participate in the stimulation of PIC formation (and hence transcriptional initiation) at the promoter of , a gene for the high-affinity inorganic phosphate (P) transporter for crucial cellular functions, in response to nutrient signaling. We show that transcriptional initiation of occurs predominantly in a TFIID-dependent manner in the absence of P in the growth medium.

View Article and Find Full Text PDF

The evolutionarily conserved RNA polymerase II-associated factor 1 (Paf1) from yeast to humans regulates transcription and associated processes, and thus, malfunctions and/or misregulations of Paf1 are associated with cellular pathologies. Indeed, Paf1 (also known as PD2 or pancreatic differentiation 2) is found to be upregulated in poorly differentiated cancer cells, and such upregulation is involved in cellular transformation or oncogenesis. However, the basis for Paf1 upregulation in these cells remains largely unknown.

View Article and Find Full Text PDF

We have recently demonstrated that an mRNA capping enzyme, Cet1, impairs promoter-proximal accumulation/pausing of RNA polymerase II (Pol II) independently of its capping activity in to control transcription. However, it is still unknown how Pol II pausing is regulated by Cet1. Here, we show that Cet1's N-terminal domain (NTD) promotes the recruitment of FACT (cilitates hromatin ranscription that enhances the engagement of Pol II into transcriptional elongation) to the coding sequence of an active gene, , independently of mRNA-capping activity.

View Article and Find Full Text PDF

FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome.

View Article and Find Full Text PDF

NuA4 histone lysine (K) acetyltransferase (KAT) promotes transcriptional initiation of TATA-binding protein (TBP)-associated factor (TAF)-dependent ribosomal protein genes. TAFs have also been recently found to enhance antisense transcription from the 3' end of the GAL10 coding sequence. However, it remains unknown whether, like sense transcription of the ribosomal protein genes, TAF-dependent antisense transcription of GAL10 also requires NuA4 KAT.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session046pv07qptq4fsoddh0ilmmvu0hjkeul): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once