A series of bicyclic pyrazole carboxamides was synthesized and tested for inhibitory activity against the class III deacetylase sirtuin enzymes. Moderate to low micromolar inhibitory activities were obtained against SIRT1 and SIRT2. These bicyclic pyrazole compounds represent a new class of sirtuin inhibitors with a preference for SIRT1 over SIRT2.
View Article and Find Full Text PDFWe have identified the N(1)-benzyl-N(2)-methylethane-1,2-diamine unit as a substitute for the (S)-alanine benzylamide moiety for the design of co-activator associated arginine methyltransferase 1 (CARM1) inhibitors. The potency of these inhibitors is in the same order of magnitude as their predecessors and their clearance, volume of distribution, and half lives were greatly improved.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2009
We have identified a series of diphenylmethylene hydroxamic acids as novel and selective HDAC class IIa inhibitors. The original hit, N-hydroxy-2,2-diphenylacetamide (6), has sub-micromolar class IIa HDAC inhibitory activity, while the rigidified oxygen analogue, N-hydroxy-9H-xanthene-9-carboxamide (13), is slightly more selective for HDAC7 with an IC(50) of 0.05muM.
View Article and Find Full Text PDFPotent SAH analogues with constrained homocysteine units have been designed and synthesized as inhibitors of human DNMT enzymes. The five membered (2S,4S)-4-mercaptopyrrolidine-2-carboxylic acid, in 1a, was a good replacement for homocysteine, while the corresponding six-member counterpart was less active. Further optimization of 1a, changed the selectivity profile of these inhibitors.
View Article and Find Full Text PDFThe inhibitory activity of base-modified SAH analogues and the specificity of inhibiting human DNMT1 and DNMT3b2 enzymes was explored. The 6-amino group was essential while the 7-N of the adenine ring of SAH could be replaced by CH- without loss of activity against both enzymes. The introduction of small groups at the 2-position of the adenine moiety favors DNMT1 over DNMT3b2 inhibition whereas alkylation of the N(6)-amino moiety favors the inhibition of DNMT3b2 enzyme.
View Article and Find Full Text PDFWe have recently reported on a novel class of histone deacetylase (HDAC) inhibitors bearing a sulfamide group as the zinc-binding unit. Herein, we report on the synthesis of sulfamide based inhibitors designed around a lysine scaffold and their structure-activity relationships against HDAC1 and HDAC6 isotypes as well as 293T cells. Our efforts led us to an improvement of the originally disclosed lysine-based sulfamide, 2a to compound 12h which has equal potency in enzyme and cell-based assays as well as enhanced metabolic stability and PK profile.
View Article and Find Full Text PDFA series of N-benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides targeting co-activator associated arginine methyltransferase 1 (CARM1) have been designed and synthesized. The potency of these inhibitors was influenced by the nature of the heteroaryl fragment with the thiophene analogues being superior to thiazole, pyridine, isoindoline and benzofuran based inhibitors.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2009
In an effort to identify HDAC isoform selective inhibitors, we designed and synthesized novel, chiral 3,4-dihydroquinoxalin-2(1H)-one and piperazine-2,5-dione aryl hydroxamates showing selectivity (up to 40-fold) for human HDAC6 over other class I/IIa HDACs. The observed selectivity and potency (IC(50) values 10-200 nM against HDAC6) is markedly dependent on the absolute configuration of the chiral moiety, and suggests new possibilities for use of chiral compounds in selective HDAC isoform inhibition.
View Article and Find Full Text PDFThe sulfamide moiety has been utilized to design novel HDAC inhibitors. The potency and selectivity of these inhibitors were influenced both by the nature of the scaffold, and the capping group. Linear long-chain-based analogs were primarily HDAC6-selective, while analogs based on the lysine scaffold resulted in potent HDAC1 and HDAC6 inhibitors.
View Article and Find Full Text PDFA series of thieno[3,2-b]pyridine-based inhibitors of c-Met and VEGFR2 tyrosine kinases is described. The compounds demonstrated potency with IC(50) values in the low nanomolar range in vitro while the lead compound also showed in vivo activity against various human tumor xenograft models in mice. Further exploration of this class of compounds is underway.
View Article and Find Full Text PDF