This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.
View Article and Find Full Text PDFThis study investigates the feasibility of a simple electrochemical detection of Prostate Cancer Antigen 3 (PCA3) fragments extracted from patients' urine, using a thiolated single-strand DNA probe immobilized on a gold surface without using a redox probe. To enhance the PCA3 recognition process, we conducted a comparative analysis of the hybridization location using two thiolated DNA probes: Probe 1 targets the first 40 bases, while Probe 2 targets the fragment from bases 47 to 86. Hybridization with PCA3 followed, using square wave voltammetry.
View Article and Find Full Text PDFEngrailed 2 (EN2) is a homeodomain-containing transcription factor expressed in prostate cancer (PCa) cell lines and is secreted into the urines. It is nowadays considered as a promising non-invasive biomarker for PCa early diagnosis. Herein, we report the design of an electrochemical immunosensor for EN2 detection.
View Article and Find Full Text PDFSeveral studies were devoted to the design of molecularly imprinted polymer (MIP)-based sensors for the detection of a given protein. Here, we bring elements that could contribute to the understanding of the interaction mechanism involved in the recognition of a protein by an imprint. For this purpose, a polydopamine (PDA)-MIP was designed for bovine serum albumin (BSA) recognition.
View Article and Find Full Text PDF