Publications by authors named "Amal Rabti"

Improper use and harmful effects of nitrite ions pose a significant risk to human health. To address this concern, the use of carbon-based materials for electrochemical sensing is regarded as one of the most promising detection tools for ensuring the quality of drinking water and food products. In this context, we developed laser-ablated graphene electrodes (LAGEs) by direct laser scribing on a polyimide substrate, which were subsequently modified by electrochemical deposition of a redox-active melanin-like film (MeLF/LAGEs).

View Article and Find Full Text PDF

An ultrasensitive capacitance-based biosensor has been developed capable of detecting the kanamycin (KAN) antibiotic at sub-femtomolar levels. The biosensor was constructed using a potential-pulse-assisted method, allowing for the layer-by-layer deposition of a melanin-like polymeric film (MLPF) on an electrode surface modified with gold nanoparticles (AuNPs). The MLPF was formed through the electrochemical polymerization of dopamine and the specific kanamycin aptamer.

View Article and Find Full Text PDF

Regulatory bodies play a crucial role in establishing limits for food additives to ensure food quality and safety of food products, as excessive usage poses risks to consumers. In the context of processed animal-based foodstuffs, nitrite is commonly utilized as a means to slow down bacterial degradation. In this study, we have successfully leveraged the redox activity of an electrochemically deposited polydopamine (pDA) film onto gold nanoparticle (AuNP)-modified screen-printed electrodes (SPCE) to develop a sensitive and versatile methodology for the detection of nitrite using redox capacitance spectroscopy.

View Article and Find Full Text PDF

A facile and expandable methodology was successfully developed to fabricate laser-induced graphene from novel pristine aminated polyethersulfone (amPES) membranes. The as-prepared materials were applied as flexible electrodes for microsupercapacitors. The doping of amPES membranes with various weight percentages of carbon black (CB) microparticles was then performed to improve their energy storage performance.

View Article and Find Full Text PDF

In silico evaluation of aptamer/target interactions can facilitate the development of efficient biosensor with high specificity and affinity. In this work, we present in silico, i.e.

View Article and Find Full Text PDF

Bacterial diseases cause tremendous economic losses due to high morbidity and mortality in livestock animals. F17A protein, the major subunit of F17 fimbriae, is one of the most prevalent and crucial virulence factors among the pathogenic () isolated from diarrheic and septicemic animals of various species. Purification and detection of this protein is regarded as an interesting field of investigation due to its important role as a therapeutic target, such as vaccines, and as a diagnostic tool.

View Article and Find Full Text PDF

An impedance-based DNA multiplexed biosensor was designed to simultaneously detect Escherichia coli (yaiO gene) and its virulent f17 variant. The thiolated DNA dual probe was self-assembled onto the surface of the gold nanoparticle-modified screen-printed carbon electrode (AuNPs/SPCE) to recognize selected sequences from yaiO and f17 genes. The optimal conditions to prepare the bioelectrode were determined based on the monitoring of the impedimetric response fitted to an equivalent electrical circuit model.

View Article and Find Full Text PDF

In this work, we report on the design of an enzyme-less sensitive and selective electrochemical electrode for ascorbic acid (AA) detection using a modified screen-printed electrode of melanin-like nanoparticles (Mel-NPs). Cyclic voltammetry shows that the melanin-modified electrode exhibits high electrocatalytic activity for ascorbic acid. The melanin-like nanoparticles serve as a shuttle to transport electrons from ascorbic acid to the electrode surface.

View Article and Find Full Text PDF

A novel ferrocene-functionalized reduced graphene oxide (rGO)-based electrode is proposed. It was fabricated by the drop casting of ferrocene-functionalized graphene onto polyester substrate as the working electrode integrated within screen-printed reference and counter electrodes. The ferrocene-functionalized rGO has been fully characterized using FTIR, XPS, contact angle measurements, SEM and TEM microscopy, and cyclic voltammetry.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3t7cae43nsdjvrgo4or0l1cag6loja72): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once