Publications by authors named "Amal Gregosa"

Overnutrition and modern diets containing high proportions of saturated fat are among the major factors contributing to a low-grade state of inflammation, hyperglycemia and dyslipidemia. In the last decades, the global rise of type 2 diabetes and obesity prevalence has elicited a great interest in understanding how changes in metabolic function lead to an increased risk for premature brain aging and the development of neurodegenerative disorders such as Alzheimer's disease (AD). Cognitive impairment and decreased neurogenic capacity could be a consequence of metabolic disturbances.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of misfolded proteins, amyloid-β (Aβ) aggregates, and neuroinflammation in the brain. Microglial cells are key players in the context of AD, being capable of releasing cytokines in response to Aβ and degrading aggregated proteins by mechanisms involving the ubiquitin-proteasome system and autophagy. Here, we present in vivo and in vitro evidence showing that microglial autophagy is affected during AD progression.

View Article and Find Full Text PDF

Dietary restriction promotes cell regeneration and stress resistance in multiple models of human diseases. One of the conditions that could potentially benefit from this strategy is Alzheimer's disease, a chronic, progressive and prevalent neurodegenerative disease. Although there are no effective pharmacological treatments for this pathology, lifestyle interventions could play therapeutic roles.

View Article and Find Full Text PDF

Adolescence is a transitional period from childhood to adulthood characterized by puberty and brain maturation involving behavioral changes and environmental vulnerability. Diet is one of the factors affecting brain health, potentially leading to long-lasting effects. Hence, we studied the impact of early exposure (P21-60) to a high-fat diet (HFD) on mouse hippocampus, analyzing inflammation, adult neurogenesis, dendritic spine plasticity, and spatial memory.

View Article and Find Full Text PDF