Publications by authors named "Amal Dahounto"

In sub-Saharan Africa, despite the implementation of multiple control interventions, the prevalence of malaria infection and clinical cases remains high. The primary tool for vector control against malaria in this region is the use of long-lasting insecticide-treated nets (LLINs) combined or not with indoor residual spraying (IRS) to achieve a synergistic effect in protection. The objective of this study was to assess the effectiveness of LLINs, with or without IRS, protected against infection and uncomplicated clinical cases (UCC) of malaria in Benin.

View Article and Find Full Text PDF

Background: Long-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet® in a Phase III trial from June 2014 to June 2017 in Benin rural area.

View Article and Find Full Text PDF

Background: Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions.

View Article and Find Full Text PDF

Background: A study was conducted prior to implementing a cluster-randomized controlled trial (CRT) of a lethal house lure strategy in central Côte d'Ivoire to provide baseline information on malaria indicators in 40 villages across five health districts.

Methods: Human landing catches (HLC) were performed between November and December 2016, capturing mosquitoes indoors and outdoors between 18.00 and 08.

View Article and Find Full Text PDF

Background: There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae.

View Article and Find Full Text PDF

Background: Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to describe malaria vectors bionomics, insecticide resistance and transmission prior to this trial.

Methods: We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique.

View Article and Find Full Text PDF

A better understanding of malaria transmission at a local scale is essential for developing and implementing effective control strategies. In the framework of a randomized controlled trial (RCT), we aimed to provide an updated description of malaria transmission in the Korhogo area, northern Côte d'Ivoire, and to obtain baseline data for the trial. We performed human landing collections (HLCs) in 26 villages in the Korhogo area during the rainy season (September-October 2016, April-May 2017) and the dry season (November-December 2016, February-March 2017).

View Article and Find Full Text PDF

Background: Although larviciding may be a valuable tool to supplement long-lasting insecticide nets (LLINs) in West Africa in different ecological settings, its actual impact on malaria burden and transmission has yet to be demonstrated. A randomized controlled trial was therefore undertaken to assess the effectiveness of larviciding using Bacillus thuringiensis israeliensis (Bti) in addition to the use of LLINs. In order to optimally implement such a larviciding intervention, we first aimed to identify and to characterize the breeding habitats of Anopheles spp.

View Article and Find Full Text PDF

Background: Biotic and abiotic factors have been reported to affect the larvicidal efficacy of Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs), although the extent to which they are affected has been poorly documented. This paper studies the effect of sunlight exposure on the efficacy of a new larvicide formulation based on both Bti and Bs, herein after referred to as BTBSWAX, applied against two different larval stages.

Methods: The emergence of inhibition exhibited by BTBSWAX at three different dosages (1 g/m, 1.

View Article and Find Full Text PDF