Publications by authors named "Amal A Alyamani"

This study explored the green synthesis of silver nanoparticles (AgNPs) using the extracellular filtrate of as a reducing agent and evaluated their antitumor potential through in vitro and in silico approaches. The biosynthesis of AgNPs was monitored by visual observation of the color change and confirmed by UV-Vis spectroscopy, revealing a characteristic peak at 418 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed spherical nanoparticles ranging from 6.

View Article and Find Full Text PDF

The goal of the current work was to create an antibacterial agent by using polycaprolactone/chitosan (PCL/CH) nanofibers loaded with fruit extract (CMFE) as an antimicrobial agent for wound dressing. Several characteristics, including morphological, physicomechanical, and mechanical characteristics, surface wettability, antibacterial activity, cell viability, and in vitro drug release, were investigated. The inclusion of CMFE in PCL/CH led to increased swelling capability and maximum weight loss.

View Article and Find Full Text PDF

Green synthesis of nanoparticles is receiving more attention these days since it is simple to use and prepare, uses fewer harsh chemicals and chemical reactions, and is environmentally benign. A novel strategy aims to recycle poisonous plant chemicals and use them as natural stabilizing capping agents for nanoparticles. In this investigation, silver nanoparticles loaded with latex from L.

View Article and Find Full Text PDF

is a plant pathogenic fungus that causes tomato root rot disease and yield losses in tomato production. The current study's main goal is testing the antibacterial efficacy of chitosan nanoparticles loaded with essential oil (ThE-CsNPs) against in vitro and in vivo. GC-MS analysis was used to determine the chemical constituents of thyme EO.

View Article and Find Full Text PDF

L. is a medicinal plant, known as balsam, with pharmaceutical potential for its phytochemical activities and chemical constituents. Genetic diversity is a genetic tool used in medicinal plant evolution and conservation.

View Article and Find Full Text PDF

Compared to traditional physical and chemical approaches, nanobiotechnology and plant-based green synthesis procedures offer significant advantages, as well as having a greater range of medical and biotechnological applications. Nanoparticles of zinc oxide (ZnO NPs) have recently been recognized as a promising option for many industries, including optics, electrics, packaged foods, and medicine, due to their biocompatibility, low cytotoxicity, and cost-effectiveness. Several studies have shown that zinc ions are important in triggering cell apoptosis by promoting the generation of reactive oxygen species (ROSs) and releasing zinc ions (Zn), which are toxic to cells.

View Article and Find Full Text PDF

Nanoparticles of gold with zinc oxide (Au@ZnO NPs) were prepared by laser ablation and then capped with curcumin nanoparticles (Cur-Au@ZnO NPs). The synthesized NPs were characterized using different techniques, including transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-visible spectroscopy, and X-ray diffraction. In addition, the ability of NPs as a promising antibacterial agent was tested against through the agar well diffusion method and AO/EtBr staining assay.

View Article and Find Full Text PDF

Nano-fertilizers are innovative materials created by nanotechnology methodologies that may potentially replace traditional fertilizers due to their rapid absorption and controlled distribution of nutrients in plants. In the current study, phosphorous-containing hydroxyapatite nanoparticles (nHAP) were synthesized as a novel phosphorus nano-fertilizer using an environmentally friendly green synthesis approach using pomegranate peel (PPE) and coffee ground (CE) extracts. nHAPs were physicochemically characterized and biologically evaluated utilizing the analysis of biochemical parameters such as photosynthetic activity, carbohydrate levels, metabolites, and biocompatibility changes in L.

View Article and Find Full Text PDF

Cyanobacteria comprise a good natural resource of a potential variety of neuro-chemicals, including acetylcholinesterase inhibitors essential for Alzheimer's disease treatment. Accordingly, eight different cyanobacterial species were isolated, identified, and evaluated on their growth on different standard nutrient media. It was found that the modified medium supported the highest growth of the test cyanobacteria.

View Article and Find Full Text PDF

This research aims to investigate the synthesis, characterization, and evaluation of the biocompatibility and antibacterial activity of novel zinc oxide (ZnO) nanoparticles (NPs) prepared by peel and ground extracts as the reducing and capping agents. Chemically synthesized ZnONPs were prepared using zinc acetate dihydrate and sodium hydroxide as reducing precursors. ZnONPs were characterized using an ultraviolet-visible spectrophotometer (UV-VIS), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Fifty broiler chicks were divided into five groups to study the antiviral and immune-stimulant effect of essential oils (ACEO). The effect of essential oils administration single or combined with NVD vaccine in broilers, more than one parameter was studied in this study i.e.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is regarded as a threat because it spreads quickly across the world without requiring a passport or establishing an identity. This tiny virus has wreaked havoc on people's lives, killed people, and created psychological problems all over the world. The viral spike protein (S) significantly contributes to host cell entry, and mutations associated with it, particularly in the receptor-binding protein (RBD), either facilitate the escape of virus from neutralizing antibodies or enhance its transmission by increasing the affinity for cell entry receptor, angiotensin-converting enzyme 2 (ACE2).

View Article and Find Full Text PDF

In the present study, is used for the synthesis of capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC.

View Article and Find Full Text PDF

Dental caries results from the bacterial pathogen () and is the maximum critical reason for caries formation. Consequently, the present study aims to evaluate the antibacterial activity of a newly synthesized nanoantibiotic-Biodentine formulation. The silver nanoparticles (ROE-AgNPs) were biosynthesized from the usage of L.

View Article and Find Full Text PDF

Green nanoparticle synthesis is an environmentally friendly approach that uses natural solvents. It is preferred over chemical and physical techniques due to the time and energy savings. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) through a green method that used leaf extract as an effective reducing agent.

View Article and Find Full Text PDF

Irresponsible human interventions, encroachment of natural habitats, and climate change negatively affect wildlife. In this study, the effects of human influence on Wadi Hagul, an unprotected area in the north of the Egyptian Eastern Desert that has recently been subjected to blatant encroachments of vegetation, were studied. The most important of these threats is the construction of the new road Al-Galala-Wadi Hagul-Zafarana.

View Article and Find Full Text PDF

Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes () that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques.

View Article and Find Full Text PDF

Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer's method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa () seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing.

View Article and Find Full Text PDF