Publications by authors named "Amaia Diaz de Zerio Mendaza"

We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices.

View Article and Find Full Text PDF

Organic semiconductors are key materials for the next generation thin film electronic devices like field-effect transistors, light-emitting diodes, and solar cells. Accurate thermal analysis is essential for the fundamental understanding of these materials, for device design, stability studies, and quality control because the desired nanostructures are often far from thermodynamic equilibrium and therefore tend to evolve with time and temperature. However, classical experimental techniques are insufficient because the active layer of most organoelectronic device architectures is typically only on the order of a hundred nanometers or less.

View Article and Find Full Text PDF

We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices.

View Article and Find Full Text PDF

The solubility of pristine fullerenes can be enhanced by mixing C60 and C70 due to the associated increase in configurational entropy. This "entropic dissolution" allows the preparation of field-effect transistors with an electron mobility of 1 cm(2) V(-1) s(-1) and polymer solar cells with a highly reproducible power-conversion efficiency of 6%, as well as a thermally stable active layer.

View Article and Find Full Text PDF

Molecular weight (MW) is one of the most important characteristics of macromolecules. Sometimes, MW cannot be measured correctly by conventional methods like gel permeation chromatography (GPC) due to, for example, aggregation. We propose using single-molecule spectroscopy to measure the average MW simply by counting individual fluorescent molecules embedded in a thin matrix film at known mass concentration.

View Article and Find Full Text PDF

The formation of fullerene crystals represents a major degradation pathway of polymer/fullerene bulk-heterojunction thin films that inexorably deteriorates their photovoltaic performance. Currently no tools exist that reveal the origin of fullerene crystal formation vertically through the film. Here, we show that electron tomography can be used to study nucleation and growth of fullerene crystals.

View Article and Find Full Text PDF

A new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV.

View Article and Find Full Text PDF