Background: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur.
Methods: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA).
Introduction: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur.
Methods: Here, we evaluated susceptibility to dihydroartemisinin (DHA) from 38 isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA).