Background: Diabetes augments activity of histone deacetylase 6 (HDAC6) and generation of tumor necrosis factor α (TNFα) and impairs the physiological function of mitochondrial complex I (mCI) which oxidizes reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide to sustain the tricarboxylic acid cycle and β-oxidation. Here we examined how HDAC6 regulates TNFα production, mCI activity, mitochondrial morphology and NADH levels, and cardiac function in ischemic/reperfused diabetic hearts.
Methods: HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent myocardial ischemia/reperfusion injury or in a Langendorff-perfused system.
Methods Mol Biol
July 2022
Significance: Three-dimensional (3D) vascular and metabolic imaging (VMI) of whole organs in rodents provides critical and important (patho)physiological information in studying animal models of vascular network.
Aim: Autofluorescence metabolic imaging has been used to evaluate mitochondrial metabolites such as nicotinamide adenine dinucleotide (NADH) and flavine adenine dinucleotide (FAD). Leveraging these autofluorescence images of whole organs of rodents, we have developed a 3D vascular segmentation technique to delineate the anatomy of the vasculature as well as mitochondrial metabolic distribution.
Introduction: the objective was to identify the predictive factors contributing to COVID-related deaths in Intensive Care Unit.
Methods: this was a 4-month (12 March to 12 July 2020) cross sectional study carried out in the intensive care unit of the COVID treatment center of Donka National Hospital, the only hospital with a COVID intensive care unit in Guinea.
Results: during our period of study 140 patients were hospitalized in the COVID intensive care unit and 35 patients died (25%).
Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models.
View Article and Find Full Text PDF