Publications by authors named "Amado Velazquez-Benitez"

We report on an all-fiber setup capable of generating complex intensity patterns using interference of few guided modes. Comprised by a few-mode fiber (FMF) spliced to a multimodal interference (MMI) fiber device, the setup allows for obtaining different output patterns upon adjusting the phases and intensities of the modes propagating in the FMF. We analyze the output patterns obtained when exciting two family modes in the MMI device using different phase and intensity conditions for the FMF modal base.

View Article and Find Full Text PDF

We report on a simple fabrication technique for Fabry-Perot (FP) sensors formed by a microbubble within a polymer drop deposited on the tip of an optical fiber. Polydimethylsiloxane (PDMS) drops are deposited on the tips of standard single-mode fibers incorporating a layer of carbon nanoparticles (CNPs). A microbubble inside this polymer end-cap, aligned along the fiber core, can be readily generated on launching light from a laser diode through the fiber, owing to the photothermal effect produced in the CNP layer.

View Article and Find Full Text PDF

The transmission properties of a photonic crystal immersed in several different oils have been characterized using terahertz time domain spectroscopy in the spectral range of 0.3-1.5 THz.

View Article and Find Full Text PDF

We demonstrate optical fiber sensors based on highly coupled multicore fibers operating with the optical Vernier effect. The sensors are constructed using a simple device incorporating single-mode fibers (SMFs) and a segment of a multicore fiber. In particular, we evaluated the performance of a sensor based on a seven-core fiber (SCF) spliced at both ends to conventional SMFs, yielding a versatile arrangement for realizing Vernier-based fiber sensors.

View Article and Find Full Text PDF

We demonstrate tunable microring resonators (TMRs) based on light-activated functional polymer coatings deposited on glass optical fibers. TMRs were fabricated using two layers of polydimethylsiloxane-based compounds: one incorporating an azobenzene dye and one using a fluorescent ytterbium and erbium-doped sodium yttrium fluoride powder. The latter yields a photoluminescent composite producing green up-conversion emission under infrared pumping.

View Article and Find Full Text PDF

The fibre-optic microwave photonic link has become one of the basic building blocks for microwave photonics. Increasing the optical power at the receiver is the best way to improve all link performance metrics including gain, noise figure and dynamic range. Even though lasers can produce and photodetectors can receive optical powers on the order of a Watt or more, the power-handling capability of optical fibres is orders-of-magnitude lower.

View Article and Find Full Text PDF

We present a new technique allowing the fabrication of large modal count photonic lanterns for space-division multiplexing applications. We demonstrate mode-selective photonic lanterns supporting 10 and 15 spatial channels by using graded-index fibres and microstructured templates. These templates are a versatile approach to position the graded-index fibres in the required geometry for efficient mode sampling and conversion.

View Article and Find Full Text PDF

We demonstrate a simple approach based on a photonic lantern spatial-mode multiplexer and a few-mode fiber for optical and manipulation of multiple microspheres. Selective generation of linearly polarized (LP) fiber modes provides light patterns useful for trapping one or multiple microparticles. Furthermore, rotation of the particles can be achieved by switching between degenerate LP modes, as well as through polarization rotation of the input light.

View Article and Find Full Text PDF

The advent of nanotechnology has triggered novel developments and applications for polymer-based membranes with embedded or coated nanoparticles. As an example, interaction of laser radiation with metallic and carbon nanoparticles has shown to provide optically triggered responses in otherwise transparent media. Incorporation of these materials inside polymers has led to generation of plasmonic and photothermal effects through the enhanced optical absorption of these polymer composites.

View Article and Find Full Text PDF

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

View Article and Find Full Text PDF

A bending sensor is demonstrated using the combination of a mode-selective photonic lantern (PL) and a multicore fiber. A short section of three-core fiber with strongly coupled cores is used as the bend sensitive element. The supermodes of this fiber are highly sensitive to the refractive index profiles of the cores.

View Article and Find Full Text PDF

To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays.

View Article and Find Full Text PDF