Publications by authors named "Amadeo Sena-Torralba"

Chronic wound management requires continuous monitoring to assess healing and guide treatment. We developed a hollow microneedle array patch integrated with a lateral flow immunoassay strip to address the need for convenient, home-based diagnostics. This device extracts wound exudate directly from the wound matrix, overcoming the limitations of conventional swab sampling, which relies on surface exudate collection.

View Article and Find Full Text PDF

Lactate dehydrogenase (LDH), a prevalent enzyme involved in anaerobic glycolysis, is released into body fluids following cell damage and has long been a general marker of tissue injury. However, due to its lack of selectivity and the advent of more accurate biomarkers, the clinical utility of LDH has been largely limited to confirming hemolysis. LDH has been recognized as a valuable prognostic biomarker for various cancers, making its monitoring crucial during cancer management.

View Article and Find Full Text PDF

Plant health monitoring is devised as a new concept to elucidate in situ physiological processes. The need for increased food production to nourish the growing global population is inconsistent with the dramatic impact of climate change, which hinders crop health and exacerbates plant stress. In this context, wearable sensors play a crucial role in assessing plant stress.

View Article and Find Full Text PDF

Electrochemical (EC) bio- and chemosensors are highly promising for on-chip and point-of-care testing (POST) devices. They can make a breakthrough in early cancer diagnosis. Most current EC sensors for cancer biomarkers' detection and determination use natural antibodies as recognition units.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of point-of-care (PoC) assays aims to decentralize health care, with lateral flow immunoassays (LFIA) being a prominent and cost-effective option, although their sensitivity limitations restrict early disease detection.
  • This review examines the integration of electrokinetic phenomena into paper-based assays to improve their performance for PoC testing, making them more versatile and affordable.
  • It also addresses the challenges of combining electrokinetics with paper-based biosensing and highlights necessary improvements to fully harness this technology for early diagnosis.
View Article and Find Full Text PDF

Quality assurance and food safety are of great concern within the food industry because of unknown quantities of allergens often present in food. Therefore, there is an ongoing need to develop rapid, sensitive, and easy to use methods that serve as an alternative to mass spectrometry and enzyme-linked immunosorbent assay (ELISA) for monitoring food safety. Lateral flow immunoassay is one of the most used point-of-need devices for clinical, environmental, and food safety applications.

View Article and Find Full Text PDF

The hypothesis of this study is centered around the logic that an enhanced analysis of potential allergens during the food production can lead to increased accuracy and reliability of food labeling. The development of a cost-effective and straightforward optoelectrical microanalytical system for the simultaneous quantification of the six most common food allergens (peanut, hazelnut, almond, milk, wheat, and soybean) is presented. The system uses a regular versatile disc (DVD) functionalized with highly selective antibodies in a microarray format and a DVD drive as the optical detector.

View Article and Find Full Text PDF

Lateral flow assays (LFAs) are currently the most used point-of-care sensors for both diagnostic (e.g., pregnancy test, COVID-19 monitoring) and environmental (e.

View Article and Find Full Text PDF

The impact of the COVID-19 pandemic has reinforced the need for rapid, cost-effective, and reliable point-of-care testing (POCT) devices for massive population screening. The co-circulation of SARS-CoV-2 with several seasonal respiratory viruses highlights the need for multiplexed biosensing approaches. Herein, we present a fast and robust all-in-one POCT device for parallel viral antigen and serological analysis.

View Article and Find Full Text PDF

Point-of-care (PoC) tests are practical and effective diagnostic solutions for major clinical problems, ranging from the monitoring of a pandemic to recurrent or simple measurements. Although, in recent years, a great improvement in the analytical performance of such sensors has been observed, there is still a major issue that has not been properly solved: the ability to perform adequate sample treatments. The main reason is that normally sample treatments require complicated or long procedures not adequate for deployment at the PoC.

View Article and Find Full Text PDF

Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest.

View Article and Find Full Text PDF

The ease of use, low cost and quick operation of lateral flow assays (LFA) have made them some of the most common point of care biosensors in a variety of fields. However, their generally low sensitivity has limited their use for more challenging applications, where the detection of low analytic concentrations is required. Here we propose the use of soluble wax barriers to selectively and temporarily accumulate the target and label nanoparticles on top of the test line (TL).

View Article and Find Full Text PDF

Significant levels of infectious diseases caused by pathogenic bacteria are nowadays a worldwide matter, carrying considerable public health care challenges and huge economic concerns. Because of the rapid transmission of these biothreat agents and the outbreak of diseases, a rapid detection of pathogens in early stages is crucial, particularly in low-resources settings. To this aim, we developed for the first time a new sensing approach carried out in a single step for O157:H7 detection.

View Article and Find Full Text PDF

Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy.

View Article and Find Full Text PDF

Lateral flow biosensors are paper-based devices that allow the detection of different types of analytes with quickness, robustness and selectivity, without leaving behind paper sensors benefits as low-cost, recyclability and sustainability. Nanomaterials have been widely reported in lateral flow biosensors, offering new sensing strategies based on optical or electrical detection techniques. Looking for other advantageous nanomaterials, we propose for the first time the use of iridium oxide (IV) nanoparticles in lateral flow assays for the detection of human immunoglobulin as a model protein.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: