Purpose: We aimed to describe RAS mutations in gynecologic cancers as they relate to clinicopathologic and genomic features, survival, and therapeutic implications.
Experimental Design: Gynecologic cancers with available somatic molecular profiling data at our institution between February 2010 and August 2022 were included and grouped by RAS mutation status. Overall survival was estimated by the Kaplan-Meier method, and multivariable analysis was performed using the Cox proportional hazard model.
Introduction: We aimed to identify clinical, pathologic, and treatment factors that are predictive of response and survival in patients with cervical cancer referred to phase I clinical trials.
Methods: Patients with cervical cancer who received at least one dose of a phase I investigational agent at our institution between 2014 and 2022 were included. The log-rank test was used to analyze differences in progression-free survival (PFS) and overall survival (OS), and multivariable regression analysis was performed.
CD47-SIRPα interaction acts as a "don't eat me" signal and is exploited by cancer to downregulate innate and adaptive immune surveillance. There has been intense interest to develop a mechanism of blockade, and we aimed to analyze the emerging data from early clinical trials. We performed a systematic review and meta-analysis of relevant databases and conference abstracts including clinical trials using CD47 and/or SIRPα inhibitors in cancer treatment.
View Article and Find Full Text PDFMol Cancer Ther
November 2022
The development of selective KRASG12C inhibitors that directly inhibit KRAS, an oncogene historically thought to be "undruggable," represents a watershed moment in oncology and developmental therapeutics. Now, as KRAS-targeted therapy moves into its second phase, there is significant excitement and anticipation for durable disease control in tumor types where options remain limited, with clinical trials testing combination therapies, indirect pan-RAS/MAP kinase pathway inhibitors, and active-state RAS(on) inhibitors. However, there is also reason for caution regarding the safety and tolerability of expanded RAS inhibition.
View Article and Find Full Text PDFPurpose: is the most mutated proto-oncogene that has been identified in cancer, and treatment of patients with mutations remains an arduous challenge. Recently, mutation has attracted special interest because it is now considered potentially druggable with recently developed covalent small-molecule inhibitors. Nevertheless, to date, there have been no large-scale analyses of liquid biopsy that include testing for .
View Article and Find Full Text PDFAdoptive cell therapy (ACT) has shown promise in hematologic and solid tumors. While data supports immunogenicity of gynecologic cancers, the benefit of ACT is not yet clear. To address this question, we performed a comprehensive systematic review and meta-analysis.
View Article and Find Full Text PDFEngineering immune cells to target cancer is a rapidly advancing technology. The first commercial products, chimeric-antigen receptor (CAR) T cells, are now approved for hematologic malignancies. However, solid tumors pose a greater challenge for cellular therapy, in part because suitable cancer-specific antigens are more difficult to identify and surrounding healthy tissues are harder to avoid.
View Article and Find Full Text PDFmutations are among the most common drivers of human carcinogenesis, and are associated with poor prognosis and an aggressive disease course. With the advent of KRAS inhibitors, the RAS protein is now targetable, with such inhibitors showing marked clinical responses across multiple tumor types. However, these responses are short-lived due to the development of resistance.
View Article and Find Full Text PDFAberrations in rat sarcoma (RAS) viral oncogene are the most prevalent and best-known genetic alterations identified in human cancers. Indeed, RAS drives tumorigenesis as one of the downstream effectors of EGFR activation, regulating cellular switches and functions and triggering intracellular signaling cascades such as the MAPK and PI3K pathways. Of the three RAS isoforms expressed in human cells, all of which were linked to tumorigenesis more than three decades ago, KRAS is the most frequently mutated.
View Article and Find Full Text PDFCutaneous leishmaniasis is a parasitic and neglected tropical disease transmitted by the bites of sandflies. The emergence of cutaneous leishmaniasis in areas of war, conflict, political instability, and climate change has prompted efforts to develop a preventive vaccine. One vaccine candidate antigen is PpSP15, a 15 kDa salivary antigen from the sandfly Phlebotomus papatasi that facilitates the infection of the Leishmania parasite and has been shown to induce parasite-specific cell-mediated immunity.
View Article and Find Full Text PDFCutaneous leishmaniasis is a neglected tropical disease caused by the parasite Leishmania and transmitted by sandflies. It has become a major health problem in many tropical and subtropical countries, especially in regions of conflict and political instability. Currently, there are only limited drug treatments and no available licensed vaccine; thus, the need for more therapeutic interventions remains urgent.
View Article and Find Full Text PDFThe preferred product characteristics (for chemistry, control, and manufacture), in addition to safety and efficacy, are quintessential requirements for any successful therapeutic. Messenger RNA vaccines constitute a relatively new alternative to traditional vaccine development platforms, and thus there is less clarity regarding the criteria needed to ensure regulatory compliance and acceptance. Generally, to identify the ideal product characteristics, a series of assays needs to be developed, qualified and ultimately validated to determine the integrity, purity, stability, and reproducibility of a vaccine target.
View Article and Find Full Text PDFProteins primarily absorb UV light due to the presence of tryptophan, tyrosine, and phenylalanine residues, with absorbance maxima at 280, 275, and 258 nm, respectively. We now demonstrate that a simple value obtained by relating the absorbance at all three wavelengths, [A280/A275 + A280/A258], is a generally useful, robust, and sensitive probe of protein 'foldedness', and thus can be used to investigate unfolding, refolding, disulfide bonds, stability, buffer excipients, and even protein-protein and protein-ligand interactions.
View Article and Find Full Text PDFChagas disease due to chronic infection with Trypanosoma cruzi is a neglected cause of heart disease, affecting approximately 6-10 million individuals in Latin America and elsewhere. T. cruzi Tc24, a calcium-binding protein in the flagellar pocket of the parasite, is a candidate antigen for an injectable therapeutic vaccine as an alternative or a complement to chemotherapy.
View Article and Find Full Text PDFFrom 2002 to 2003, a global pandemic of severe acute respiratory syndrome (SARS) spread to 5 continents and caused 8000 respiratory infections and 800 deaths. To ameliorate the effects of future outbreaks as well as to prepare for biodefense, a process for the production of a recombinant protein vaccine candidate is under development. Previously, we reported the 5 L scale expression and purification of a promising recombinant SARS vaccine candidate, RBD219-N1, the 218-amino acid residue receptor-binding domain (RBD) of SARS coronavirus expressed in yeast-Pichia pastoris X-33.
View Article and Find Full Text PDFThe Anfinsen hypothesis, the demonstration of which led to the Nobel prize in Chemistry, posits that all information required to determine a proteins' three dimensional structure is contained within its amino acid sequence. This suggests that it should be possible, in theory, to fold any protein in vitro. In practice, however, protein production by refolding is challenging because suitable refolding conditions must be empirically determined for each protein and can be painstaking.
View Article and Find Full Text PDFHeat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2012
ClpB is a ring-forming, ATP-dependent protein disaggregase that cooperates with the cognate Hsp70 system to recover functional protein from aggregates. How ClpB harnesses the energy of ATP binding and hydrolysis to facilitate the mechanical unfolding of previously aggregated, stress-damaged proteins remains unclear. Here, we present crystal structures of the ClpB D2 domain in the nucleotide-bound and -free states, and the fitted cryoEM structure of the D2 hexamer ring, which provide a structural understanding of the ATP power stroke that drives protein translocation through the ClpB hexamer.
View Article and Find Full Text PDFHsp104 is a double ring-forming AAA+ ATPase, which harnesses the energy of ATP binding and hydrolysis to rescue proteins from a previously aggregated state. Like other AAA+ machines, Hsp104 features conserved cis- and trans-acting elements, which are hallmarks of AAA+ members and are essential to Hsp104 function. Despite these similarities, it was recently proposed that Hsp104 is an atypical AAA+ ATPase, which markedly differs in 3D structure from other AAA+ machines.
View Article and Find Full Text PDF