Publications by authors named "Amadei C"

The mass production of graphene oxide (GO) unavoidably elevates the chance of human exposure, as well as the possibility of release into the environment with high stability, raising public concern as to its potential toxicological risks and the implications for humans and ecosystems. Therefore, a thorough assessment of GO toxicity, including its potential reliance on key physicochemical factors, which is lacking in the literature, is of high significance and importance. In this study, GO toxicity, and its dependence on oxidation level, elemental composition, and size, were comprehensively assessed.

View Article and Find Full Text PDF

The wide application of carbon-based nanomaterials (CNMs) has resulted in the ubiquity of CNMs in the natural environment and they potentially impose adverse consequences on ecosystems and human health. In this study, we comprehensively evaluated and compared potential toxicological effects and mechanisms of seven CNMs in three representative types (carbon blacks, graphene nanoplatelets, and fullerenes), to elucidate the correlation between their physicochemical/structural properties and toxicity. We employed a recently-developed quantitative toxicogenomics-based toxicity testing system with GFP-fused yeast reporter library targeting main cellular stress response pathways, as well as conventional phenotype-based bioassays.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are a group of widely used carbon-based nanomaterials (CNMs) with various applications, which raise increasing public concerns associated with their potential toxicological effect and risks on human and ecosystems. In this report, we comprehensively evaluated the nanotoxicity of SWCNTs with their relationship to varying lengths, functional groups and electronic structures, by employing both newly established quantitative toxicogenomics test, as well as conventional phenotypic bioassays. The objective is to reveal potential cellular toxicity and mechanisms of SWCNTs at the molecular level, and to probe their potential relationships with their morphological, surface, and electronic properties.

View Article and Find Full Text PDF

In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium.

View Article and Find Full Text PDF

Exposures to poly- and perfluoroalkyl substances (PFASs) have been linked to metabolic disruption, immunotoxicity and cancer in humans. PFASs are known to be present in diverse consumer products including textiles and food packaging. Here we present a new method for quantifying the atomic percent fluorine (% F) in the surficial 0.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are cellular proteins, which upon ligand activation, act to exert regulatory control over transcription and subsequent expression. Organized via systemic classification into seven subfamilies, NRs partake in modulating a vast expanse of physiological functions essential for maintenance of life. NRs display particular characteristics towards ubiquitination, the process of addition of specific ubiquitin tags at appropriate locations.

View Article and Find Full Text PDF

Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes.

View Article and Find Full Text PDF

Objectives: Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome.

Methods: In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice.

View Article and Find Full Text PDF

Here we present the Mendeleev-Meyer Force Project which aims at tabulating all materials and substances in a fashion similar to the periodic table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic number or electronic configuration as in the periodic table. The process is divided into: (1) acquiring nanoscale force data from materials, (2) parameterizing the raw data into standardized input features to generate a library, (3) feeding the standardized library into an algorithm to generate, enhance or exploit a model to identify a material or property.

View Article and Find Full Text PDF

Here we report the synthesis of graphene oxide nanoscrolls (GONS) with tunable dimensions via low and high frequency ultrasound solution processing techniques. GONS can be visualized as a graphene oxide (GO) sheet rolled into a spiral-wound structure and represent an alternative to traditional carbon nano-morphologies. The scrolling process is initiated by the ultrasound treatment which provides the scrolling activation energy for the formation of GONS.

View Article and Find Full Text PDF

We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution.

View Article and Find Full Text PDF

Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD).

View Article and Find Full Text PDF

A method to monitor variations in the conservative and dissipative forces in dynamic atomic force microscopy is proposed in order to investigate the effects of exposing a surface to different sets of environmental conditions for prolonged periods of time. The variations are quantified by proposing and defining two metrics, one for conservative and another for dissipative interactions. Mica and graphite are chosen as model samples because they are atomically flat and easy to cleave.

View Article and Find Full Text PDF

The in vitro production of human immunoglobulins against cytomegalovirus may have clinical potentials. The attempts to produce human monoclonal antibodies by somatic cell hybridization have been unsuccessful so far. Another approach is to establish B-lymphoblastoid cell lines secreting specific antibodies.

View Article and Find Full Text PDF