Publications by authors named "Amaar Y"

The tumor microenvironment (TME) plays a vital role in tumor invasion and metastasis and provides a rich environment for identifying novel therapeutic targets. The TME landscape consists of an extracellular matrix (ECM) and stromal cells. ECM is a major component of TME that mediates the interaction between cancer cells and stromal cells to promote invasion and metastasis.

View Article and Find Full Text PDF

Introduction: Recently we have identified a novel RASSF1C-PIWIL1-piRNA pathway that promotes lung cancer cell progression and migration. PIWI-like proteins interact with piRNAs to form complexes that regulate gene expression at the transcriptional and translational levels. We have illustrated in previous work that RASSF1C modulates the expression of the PIWIL1-piRNA gene axis, suggesting the hypothesis that the RASSF1C-PIWI-piRNA pathway could potentially contribute to lung cancer stem cell development and progression, in part, through modulation of gene methylation of both oncogenic and tumor suppressor genes.

View Article and Find Full Text PDF

RASSF1C functions as an oncogene in lung cancer cells by stimulating proliferation and migration, and reducing apoptosis. Further, RASSF1C up-regulates important protein-coding and non-coding genes involved in lung cancer cell growth, including the stem cell self-renewal gene, , and small noncoding PIWI-interacting RNAs (piRNAs). In this article, we report the identification of microRNAs (miRNAs) that are modulated in lung cancer cells over-expressing RASSF1C.

View Article and Find Full Text PDF

RASSF1C up-regulates important genes involved in lung cancer cell growth, including a stem cell self-renewal gene, piwil1. In this article, we report the identification of small noncoding PIWI-interacting RNAs (piRNAs) in lung cancer cells over-expressing RASSF1C. A piRNA microarray screen was performed using RNA isolated from the lung cancer cell line H1299 stably over-expressing RASSF1C and corresponding control.

View Article and Find Full Text PDF

RASSF1C is a major isoform of the RASSF1 gene, and is emerging as an oncogene. This is in contradistinction to the RASSF1A isoform, which is an established tumor suppressor. We have previously shown that RASSF1C promotes lung cancer cell proliferation and have identified RASSF1C target genes with growth promoting functions.

View Article and Find Full Text PDF

RASSF1A has been demonstrated to be a tumor suppressor, while RASSF1C is now emerging as a growth promoting protein in breast and lung cancer cells. To further highlight the dual functionality of the RASSF1 gene, we have compared the effects of RASSF1A and RASSF1C on cell proliferation and apoptosis in the presence of TNF- α . Overexpression of RASSF1C in breast and lung cancer cells reduced the effects of TNF- α on cell proliferation, apoptosis, and MST1/2 phosphorylation, while overexpression of RASSF1A had the opposite effect.

View Article and Find Full Text PDF

Background: RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1) gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer.

View Article and Find Full Text PDF

Background: The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells.

View Article and Find Full Text PDF

Insulin-like growth factor binding protein (IGFBP)-6 has been reported to inhibit differentiation of myoblasts and osteoblasts. In the current study, we explored the mechanisms underlying IGFBP-6 effects on osteoblast differentiation. During MC3T3-E1 osteoblast differentiation, we found that IGFBP-6 protein was down-regulated.

View Article and Find Full Text PDF

Recently, the Ras association domain family 1 gene (RASSF1) has been identified as a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, the function of RASSF1C, both in normal and cancer cells, is still unknown.

View Article and Find Full Text PDF

The roles of insulin-like growth factors (IGFs) in regulating growth and their modulation by six IGF binding proteins (IGFBP) are well established. IGFBP-5, the most abundant IGFBP stored in bone, is an important regulator of bone formation via IGF-dependent and -independent mechanisms. Two new proteins, four and a half lim (FHL)-2, a transcription modulator that interacts with IGFBP-5, and a disintegrin and metalloprotease (ADAM)-9, an IGFBP-5 protease, have been identified as potential regulators of IGFBP-5 action in bone.

View Article and Find Full Text PDF

Insulin-like growth factor binding protein-5 (IGFBP5) is a multifunctional protein, which acts not only as a traditional binding protein, but also functions as a growth factor independent of IGFs to stimulate bone formation. It has been predicted that the intrinsic growth factor action of IGFBP5 involves binding of IGFBP5 to a putative receptor to induce downstream signaling pathways and/or nuclear translocation of IGFBP5 to influence transcription of genes involved in osteoblast cell proliferation/differentiation. Our study indentified proteins that bound to IGFBP5 using IGFBP5 as bait in a yeast two-hybrid screen of the U2 human osteosarcoma cell cDNA library.

View Article and Find Full Text PDF

Unlabelled: The goal of this study was to identify downstream signaling molecules involved in mediating the IGF-independent effects of IGFBP-5 in osteoblasts. We identified RASSF1C, a member of the RASSF1 gene products, as a IGFBP-5 binding partner and as a potential mediator of IGFBP-5 effects on ERK phosphorylation and cell proliferation.

Introduction: It has been predicted that the intrinsic growth factor action of insulin-like growth factor binding protein (IGFBP)-5 involves either the binding of IGFBP-5 to a putative receptor to induce downstream signaling pathways and/or intracellular translocation of IGFBP-5 to bind to potential signaling molecules involved in osteoblast cell regulation.

View Article and Find Full Text PDF

Unlabelled: To examine if sFRP3s act as decoy receptors for Wnt, we examined the effects of recombinant sFRP3 on mouse osteoblast proliferation and differentiation. We found that sFRP3 unexpectedly increased osteoblast differentiation, suggesting it may act through other mechanisms besides acting as a decoy receptor for Wnt's.

Introduction: Secreted frizzled-related proteins (sFRPs) are a truncated form of frizzled receptor, missing both the transmembrane and cytosolic domains.

View Article and Find Full Text PDF

Recent studies provide evidence that the GH/IGF-I axis plays a critical role in the regulation of bone accretion that occurs during puberty and that the peak bone mineral density (BMD) is dependent on the amount of dietary calcium intake during the active growth phases. To evaluate whether IGF-I deficiency exaggerates the effect of calcium deficiency on bone accretion during active growth phases, IGF-I knockout (KO) and wild-type (WT) mice were fed with low calcium (0.01%) or normal calcium (0.

View Article and Find Full Text PDF

To evaluate the relative contribution of the GH/IGF axis to the development of peak bone mineral density (BMD), we measured skeletal changes in IGF-I knockout (KO), IGF-II KO, and GH-deficient lit/lit mice and their corresponding control mice at d 23 (prepubertal), 31 (pubertal), and 56 (postpubertal) in the entire femur by dual energy x-ray absorptiometry and in the mid-diaphysis by peripheral quantitative computed tomography. Lack of growth factors resulted in different degrees of failure of skeletal growth depending on the growth period and the growth factor involved. At d 23, femoral length, size, and BMD were reduced by 25-40%, 15-17%, and 8-10%, respectively, in mice deficient in IGF-I, IGF-II, and GH compared with the control mice.

View Article and Find Full Text PDF

IGF binding protein-5 (BP-5) is an important bone formation regulator. Therefore, elucidation of the identity of IGF binding protein-5 (BP-5) protease produced by osteoblasts is important for our understanding of the molecular pathways that control the action of BP-5. In this regard, BP-5 protease purified by various chromatographic steps from a conditioned medium of U2 human osteosarcoma cells migrated as a single major band, which comigrated with the protease activity in native PAGE and yielded multiple bands in SDS-PAGE under reducing conditions.

View Article and Find Full Text PDF

Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty.

View Article and Find Full Text PDF

Recent studies using insulin-like growth factor I (IGF-I) knockout mice demonstrate that IGF-binding protein (IGFBP)-5, an important bone formation regulator, itself is a growth factor with cellular effects not dependent on IGFs. Because IGFBP-5 contains a nuclear localization sequence that mediates transport of IGFBP-5 into the nucleus, we propose that IGFBP-5 interacts with nuclear proteins to affect transcription of genes involved in bone formation. We therefore undertook studies to identify proteins that bind to IGFBP-5 using IGFBP-5 as bait in a yeast two-hybrid screen of a U2 human osteosarcoma cDNA library.

View Article and Find Full Text PDF

This study reports the molecular characterization of the nitrate-assimilation gene cluster from the opportunistic fungal pathogen Aspergillus fumigatus. A genomic fragment was isolated which contained the entire structural gene encoding nitrite reductase (niiA), plus segments of the nitrate reductase (niaD) and the nitrate transporter (crnA) genes. Nitrate-assimilation genes in A.

View Article and Find Full Text PDF

In this paper, we report the cloning and sequencing of the C. elegans histidyl-tRNA synthetase gene. The complete genomic sequence, and most of the cDNA sequence, of this gene is now determined.

View Article and Find Full Text PDF