Publications by authors named "Alzahraa Amer"

Background: The strength of connections between motor cortex (MCX) and muscle can be augmented with a variety of stimulation protocols. Augmenting MCX-to-muscle connection strength by neuromodulation may be a way to enhance the intact motor system's capacity for acquiring motor skills and promote function after injury to strengthen spared connections. But this enhancement must be maintained for functional improvements.

View Article and Find Full Text PDF

Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX.

View Article and Find Full Text PDF

Injury to the supraspinal motor systems, especially the corticospinal tract, leads to movement impairments. In addition to direct disruption of descending motor pathways, spinal motor circuits that are distant to and not directly damaged by the lesion undergo remodeling that contributes significantly to the impairments. Knowing which spinal circuits are remodeled and the underlying mechanisms are critical for understanding the functional changes in the motor pathway and for developing repair strategies.

View Article and Find Full Text PDF

An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery.

View Article and Find Full Text PDF