Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2020
A straightforward access to π-conjugated oligothiophenes bearing amino-rich groups was developed. Palladium-catalyzed C-H arylation applied in the main step of the synthesis allowed to couple 2-thiophenecarbonitriles and aryl bromides with moderate to excellent yields (35-93%). Then, to improve their basic fluorescence properties, these compounds were transformed into their 2,4-diamino-1,3,5-triazine derivatives, also with good to excellent yields (74-98%).
View Article and Find Full Text PDFSolvothermal reaction in N,N-dimethylformamide (DMF) between 1,6-bis(1-imidazolyl)-2,4-hexadiyne monohydrate (L1⋅H O), isophthalic acid (H L2), and Zn(NO ) ⋅6 H O gives the diacetylene-based mixed-ligand coordination polymer {[Zn(L1)(L2)](DMF) } (UMON-44) in 38 % yield. Combination of DSC with variable-temperature single-crystal X-ray diffraction revealed the occurrence of two phase transitions spanning the ranges 129-144 K and 158-188 K. Furthermore, the three structurally similar phases of UMON-44 show giant negative and/or colossal positive thermal expansions.
View Article and Find Full Text PDFBackground: Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrP(Sc). Aggregation of PrP(Sc) into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion aggregation pathways with small molecules can be a valuable strategy for studying prion pathogenicity and for developing new diagnostic and therapeutic approaches.
View Article and Find Full Text PDF