Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults.
View Article and Find Full Text PDFNeuroinflammation is a central mechanism of brain aging and Alzheimer's disease (AD), but the exact causes of age- and AD-related neuroinflammation are incompletely understood. One potential modulator of neuroinflammation is the enzyme adenosine deaminase acting on RNA 1 (ADAR1), which regulates the accumulation of endogenous double-stranded RNA (dsRNA), a pro-inflammatory/innate immune activator. However, the role of ADAR1 and its transcriptomic targets in astrocytes, key mediators of neuroinflammation, have not been comprehensively investigated.
View Article and Find Full Text PDFBrain aging is associated with reduced cognitive function that increases the risk for dementia. Apigenin is a bioactive plant compound that inhibits cellular aging processes and could protect against age-related cognitive dysfunction, but its mechanisms of action in the brain have not been comprehensively studied. We characterized brain transcriptome changes in young and old mice treated with apigenin in drinking water.
View Article and Find Full Text PDFAging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
September 2022
Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aβ], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans.
View Article and Find Full Text PDFThe amyloid beta (Aβ) peptide is believed to play a central role in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. However, the natural, evolutionarily selected functions of Aβ are incompletely understood. Here, we report that nanomolar concentrations of Aβ act synergistically with known cytokines to promote pro-inflammatory activation in primary human astrocytes (a cell type increasingly implicated in brain aging and AD).
View Article and Find Full Text PDFCancer is one of the most common age-related diseases, and over one-third of cancer patients will receive chemotherapy. One frequently reported side effect of chemotherapeutic agents like doxorubicin (Doxo) is impaired cognitive function, commonly known as "chemotherapy-induced cognitive impairment (CICI)", which may mimic accelerated brain aging. The biological mechanisms underlying the adverse effects of Doxo on the brain are unclear but could involve mitochondrial dysfunction.
View Article and Find Full Text PDFOne of the best strategies for healthy brain aging is regular aerobic exercise. Commonly studied "anti-aging" compounds may mimic some effects of exercise on the brain, but novel approaches that target energy-sensing pathways similar to exercise probably will be more effective in this context. We review evidence in support of this hypothesis by focusing on biological hallmarks of brain aging.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
April 2021
Transcripts from noncoding repetitive elements (REs) in the genome may be involved in aging. However, they are often ignored in transcriptome studies on healthspan and lifespan, and their role in healthy aging interventions has not been characterized. Here, we analyze REs in RNA-seq datasets from mice subjected to robust healthspan- and lifespan-increasing interventions including calorie restriction, rapamycin, acarbose, 17-α-estradiol, and Protandim.
View Article and Find Full Text PDFTranscriptomic markers of aging can be useful for studying age-related processes and diseases. However, noncoding repetitive element (RE) transcripts, which may play an important role in aging, are commonly overlooked in transcriptome studies-and their potential as a transcriptomic marker of aging has not been evaluated. Here, we used multiple RNA-seq datasets generated from human samples and Caenorhabditis elegans and found that most RE transcripts (a) accumulate progressively with aging; (b) can be used to accurately predict age; and (c) may be a good marker of biological age.
View Article and Find Full Text PDF