Publications by authors named "Alyssa Melvin"

We report the design of a blood-contacting glucose monitor with a nitric oxide (NO)-releasing metal-organic framework (MOF) embedded within the outer polymer layer of a glucose sensor to promote the release of NO from endogenous NO donors. The sensors were tested by using amperometry across a range of glucose concentrations to assess whether the presence of either the MOF or NO decreased the performance of the glucose monitor. Even though signal response was diminished, the sensors maintained a good regression fit ( = 0.

View Article and Find Full Text PDF

Medical devices that require substantial contact between blood and a foreign surface would be dramatically safer if constructed from materials that prevent clot formation and coagulation disturbance at the blood-biomaterial interface. Nitric oxide (NO), an endogenous inhibitor of platelet activation in the vascular endothelium, could provide anticoagulation at the blood-surface interface when applied to biomaterials. We investigated an application of a copper-based metal-organic framework, H[(CuCl)(BTTri)-(HO)]·72HO where HBTTri = 1,3,5-tris(1-1,2,3-triazole-5-yl)benzene] (CuBTTri), which has been shown to be an effective catalyst to generate NO from -nitrosothiols that are endogenously present in blood.

View Article and Find Full Text PDF

It has been previously demonstrated that metal nanoparticles embedded into polymeric materials doped with nitric oxide (NO) donor compounds can accelerate the release rate of NO for therapeutic applications. Despite the advantages of elevated NO surface flux for eradicating opportunistic bacteria in the initial hours of application, metal nanoparticles can often trigger a secondary biocidal effect through leaching that can lead to unfavorable cytotoxic responses from host cells. Alternatively, copper-based metal organic frameworks (MOFs) have been shown to stabilize Cu via coordination while demonstrating longer-term catalytic performance compared to their salt counterparts.

View Article and Find Full Text PDF

When flowing whole blood contacts medical device surfaces, the most common blood-material interactions result in coagulation, inflammation, and infection. Many new blood-contacting biomaterials have been proposed based on strategies that address just one of these common modes of failure. This study proposes to mitigate unfavorable biological reactions that occur with blood-contacting medical devices by designing multifunctional surfaces, with features optimized to meet multiple performance criteria.

View Article and Find Full Text PDF

S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) are susceptible to decomposition by stimuli including heat, light, and trace metal ions. Using stepwise isothermal thermogravimetric analysis (TGA), we observed that NO-forming homolytic cleavage of the S-N bond occurs at 134.7 ± 0.

View Article and Find Full Text PDF

S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) are known to produce nitric oxide (NO) through thermal, photolytic, and metal ion-promoted pathways, which has led to their increasing use as exogenous sources of therapeutic NO. Despite the burgeoning NO release applications for RSNOs, their susceptibility to metal-promoted decomposition has rarely been examined in a uniform manner through the specific measurement of NO release. In this study, the ability of various transition and post-transition metal ions to promote NO release from GSNO was surveyed by chemiluminescence-based NO detection.

View Article and Find Full Text PDF