Publications by authors named "Alyssa Manning"

We previously identified a phenylthiourea series with activity against intracellular Mycobacterium tuberculosis using a high-throughput, high-content assay. We conducted a catalog structure-activity relationship study with a collection of 35 analogs. We identified several thiourea derivatives with excellent potency against intracellular bacteria and good selectivity over eukaryotic cells.

View Article and Find Full Text PDF

is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of growth within macrophage-like cells using high content analysis.

View Article and Find Full Text PDF

NF-κB is an important mediator of immune activity and its activation is essential in mounting immune response to pathogens. Here, we describe the optimization and implementation of a high-throughput screening platform that utilizes high content imaging and analysis to monitor NF-κB nuclear translocation. We screened 38,991 compounds from three different small molecule libraries and identified 103 compound as hits; 31% of these were active in a dose response assay.

View Article and Find Full Text PDF

The phenoxy alkyl benzimidazoles (PABs) have good antitubercular activity. We expanded our structure-activity relationship studies to determine the core components of PABs required for activity. The most potent compounds had minimum inhibitory concentrations against Mycobacterium tuberculosis in the low nanomolar range with very little cytotoxicity against eukaryotic cells as well as activity against intracellular bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis is a major global health issue, complicated by the emergence of drug-resistant strains, creating a need for new treatment options.
  • Researchers created a novel screening method using live-cell fluorescence and high content microscopy to assess compounds' effects on both the growth of Mycobacterium tuberculosis and their toxicity to mammalian cells.
  • The assay was validated using known drugs, demonstrating its effectiveness for high-throughput testing of potential new tuberculosis treatments in a more realistic biological environment.
View Article and Find Full Text PDF

The epithelial to mesenchymal transition (EMT) is an essential process that occurs repeatedly during embryogenesis whereby stably adherent cells convert to an actively migrating state. While much is known about the factors and events that initiate the EMT, the steps that cells undergo to become directionally migratory are far less well understood. Zebrafish embryos lacking the transcription factors Tbx16/Spadetail and Mesogenin1 (Msgn1) are a valuable system for investigating the EMT.

View Article and Find Full Text PDF

Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects.

View Article and Find Full Text PDF

Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell-cell contacts during embryogenesis and post-embryonic development.

View Article and Find Full Text PDF

Epithelial morphogenesis is essential for shaping organs and tissues and for establishment of the three embryonic germ layers during gastrulation. Studies of gastrulation in Drosophila have provided insight into how epithelial morphogenesis is governed by developmental patterning mechanisms. We developed an assay to recapitulate morphogenetic shape changes in individual cultured cells and used RNA interference-based screening to identify Mist, a Drosophila G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) that transduces signals from the secreted ligand Folded gastrulation (Fog) in cultured cells.

View Article and Find Full Text PDF

G protein signaling pathways, as key components of physiologic responsiveness and timing, are frequent targets for pharmacologic intervention. Here, we identify an effector for heterotrimeric G protein α subunit (EhGα1) signaling from Entamoeba histolytica, the causative agent of amoebic colitis. EhGα1 interacts with this effector and guanosine triphosphatase-accelerating protein, EhRGS-RhoGEF, in a nucleotide state-selective fashion.

View Article and Find Full Text PDF