Publications by authors named "Alyssa Hasty"

Obesity is an established risk factor for breast cancer development and worsened prognosis; however, the mechanisms for this association - and the potential benefits of weight loss - have not been fully explored. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression. An emerging therapeutic target for cancer is TREM2, a transmembrane receptor of the immunoglobulin superfamily that is expressed on macrophages in adipose tissue and tumors.

View Article and Find Full Text PDF

Background: Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo.

View Article and Find Full Text PDF

Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles, including managing inflammatory tone and regulating parenchymal iron homeostasis, thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues.

View Article and Find Full Text PDF

Background: Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). , microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name ) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease .

View Article and Find Full Text PDF

Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles including managing inflammatory tone and regulating parachymal iron homeostasis; thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages, and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues.

View Article and Find Full Text PDF

Obesity is a leading risk factor for progression and metastasis of many cancers, yet can in some cases enhance survival and responses to immune checkpoint blockade therapies, including anti-PD-1, which targets PD-1 (encoded by PDCD1), an inhibitory receptor expressed on immune cells. Although obesity promotes chronic inflammation, the role of the immune system in the obesity-cancer connection and immunotherapy remains unclear. It has been shown that in addition to T cells, macrophages can express PD-1.

View Article and Find Full Text PDF

The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases.

View Article and Find Full Text PDF

Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes.

View Article and Find Full Text PDF

Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response.

View Article and Find Full Text PDF

All cells of the immune system reside in adipose tissue (AT), and increasing type 2 immune cells may be a therapeutic strategy to improve metabolic health. In our previous study using i.p.

View Article and Find Full Text PDF

Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes.

View Article and Find Full Text PDF

Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes.

View Article and Find Full Text PDF

Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations.

View Article and Find Full Text PDF
Article Synopsis
  • A new mouse model lacking complement factor 5 (C5) was created using CRISPR-Cas9 to study its role in obesity-related metabolic dysfunction.
  • The study found that while losing C5 did not affect weight gain, it worsened glucose tolerance in obese male mice, but not in female mice.
  • The results indicate that loss of C5 could amplify glucose intolerance in obesity but further research is needed to understand the underlying mechanisms.
View Article and Find Full Text PDF

Identifying molecular circuits that control adipose tissue macrophage (ATM) function is necessary to understand how ATMs contribute to tissue homeostasis and obesity-induced insulin resistance. In this study, we find that mice with a myeloid-specific knockout of the miR-23-27-24 clusters of microRNAs (miRNAs) gain less weight on a high-fat diet but exhibit worsened glucose and insulin tolerance. Analysis of ATMs from these mice shows selectively reduced numbers and proliferation of a recently reported subset of lipid-associated CD9Trem2 ATMs (lipid-associated macrophages [LAMs]).

View Article and Find Full Text PDF

Aims: Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling.

Methods And Results: Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages.

View Article and Find Full Text PDF

As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center.

View Article and Find Full Text PDF

Introduction: Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity.

View Article and Find Full Text PDF

Purpose Of Review: In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases.

Recent Findings: Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations.

View Article and Find Full Text PDF

Cancer continues to be a substantial health concern and a leading cause of death in the United States and around the world. Therefore, it is important to continue to explore the potential of novel therapeutic targets and combinatorial therapies. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that associates with DNAX activation protein (DAP) 12 and DAP10 to propagate signals within the cell.

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cells 2 (Trem2) is highly expressed on myeloid cells and is involved in cellular lipid homeostasis and inflammatory processes. Trem2 deletion in mice (Trem2 ) evokes adipose tissue dysfunction, but its role in worsening obesity-induced metabolic dysfunction has not been resolved. Here we aimed to determine the causal role of Trem2 in regulating glucose homeostasis and insulin sensitivity in mice.

View Article and Find Full Text PDF

Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins.

View Article and Find Full Text PDF