Efforts to unveil the structure of the local interstellar medium and its recent star-formation history have spanned the past 70 years (refs. ). Recent studies using precise data from space astrometry missions have revealed nearby, newly formed star clusters with connected origins.
View Article and Find Full Text PDFOur Sun lies within 300 parsecs of the 2.7-kiloparsecs-long sinusoidal chain of dense gas clouds known as the Radcliffe Wave. The structure's wave-like shape was discovered using three-dimensional dust mapping, but initial kinematic searches for oscillatory motion were inconclusive.
View Article and Find Full Text PDFFor decades we have known that the Sun lies within the Local Bubble, a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust. However, the precise shape and extent of this shell, the impetus and timescale for its formation, and its relationship to nearby star formation have remained uncertain, largely due to low-resolution models of the local interstellar medium. Here we report an analysis of the three-dimensional positions, shapes and motions of dense gas and young stars within 200 pc of the Sun, using new spatial and dynamical constraints.
View Article and Find Full Text PDFFor the past 150 years, the prevailing view of the local interstellar medium has been based on a peculiarity known as the Gould Belt, an expanding ring of young stars, gas and dust, tilted about 20 degrees to the Galactic plane. However, the physical relationship between local gas clouds has remained unknown because the accuracy in distance measurements to such clouds is of the same order as, or larger than, their sizes. With the advent of large photometric surveys and the astrometric survey, this situation has changed.
View Article and Find Full Text PDFThe initial multiplicity of stellar systems is highly uncertain. A number of mechanisms have been proposed to explain the origin of binary and multiple star systems, including core fragmentation, disk fragmentation and stellar capture. Observations show that protostellar and pre-main-sequence multiplicity is higher than the multiplicity found in field stars, which suggests that dynamical interactions occur early, splitting up multiple systems and modifying the initial stellar separations.
View Article and Find Full Text PDFWe analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken.
View Article and Find Full Text PDFWe report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity.
View Article and Find Full Text PDFSelf-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function.
View Article and Find Full Text PDF