Publications by authors named "Alyssa C Henry"

Gradient elution isotachophoresis (GEITP) was demonstrated for DNA purification, concentration, and quantification from crude samples, represented here by soiled buccal swabs, with minimal sample preparation prior to human identification using STR analysis. During GEITP, an electric field applied across leading and trailing electrolyte solutions resulted in isotachophoretic focusing of DNA at the interface between these solutions, while a pressure-driven counterflow controlled the movement of the interface from the sample reservoir into a microfluidic capillary. This counterflow also prevented particulates from fouling or clogging the capillary and reduced or eliminated contamination of the delivered DNA by PCR inhibitors.

View Article and Find Full Text PDF

Gradient elution moving boundary electrophoresis (GEMBE) is a robust, continuous injection separation technique that uses electrophoresis to drive electrically charged analytes into a capillary or microfluidic channel for detection, while opposing electroosmosis and controlled variable pressure-driven flow prevent other sample components-for example, cells, proteins, or particulates in complex samples that can interfere with analysis-from entering the channel. This work expands the sample-in/answer-out analytical capabilities of GEMBE for complex samples by demonstrating the quantitative analysis of anions, implementing aqueous background electrolyte (BGE) solutions at neutral pH, and introducing the use of additives to the sample solution to optimize performance. Dirt was analyzed quantitatively, with the sole preparatory step of suspension in an aqueous BGE solution at neutral pH, for dissolved chloride, nitrite, nitrate, sulfate, and oxalate using GEMBE with capacitively-coupled contactless conductivity detection.

View Article and Find Full Text PDF

Sample-in answer-out analytical tools remain the goal of much lab on a chip research, but miniaturized methods capable of examining minimally prepared samples have proven elusive. Complex samples, including whole milk, various types of dirt and leaves, coal fly ash, and blood serum, were analyzed quantitatively for dissolved potassium, calcium, sodium, magnesium, lithium, and melamine using gradient elution moving boundary electrophoresis (GEMBE) and contactless conductivity detection with the single preparatory step of dilution or suspension in sample buffer. GEMBE is a simple, robust analytical technique, well-suited to microfluidic analysis of complex samples containing material, such as particulates or proteins, that would confound the majority of other microfluidic techniques.

View Article and Find Full Text PDF

This report describes a new method for the concentration and separation of neutral and/or hydrophobic analytes based on a combination of the analytes' electrophoretic mobility, and affinity for partitioning into a micellar phase. Micellar affinity gradient focusing (MAGF) works by creating a gradient in the micellar retention factor. An electric field is applied along the channel to cause the (negatively charged) micelles to move from the region of high retention to the region of low retention, and the mobile phase is forced to move from the region of low retention to the region of high retention.

View Article and Find Full Text PDF

The fabrication of microchannels in poly(ethylene terephthalate glycol) (PETG) by laser ablation and the hot imprinting method is described. In addition, hot imprinted microchannels were hydrolyzed to yield additional charged organic functional groups on the imprinted surface. The charged groups are carboxylate moieties that were also used as a means for the further reaction of different chemical species on the surface of the PETG microchannels.

View Article and Find Full Text PDF