The taxonomic composition of microbial communities in animals varies among animal species, but the contribution of interspecific differences in filtering of the microbial pool by the animal host to this variation is uncertain. Here, we demonstrate significant interspecific variation in microbial community composition among laboratory-reared Drosophila species that was not related to host phylogeny. Complementary reciprocal transfer experiments yielded different microbial communities for a single microbiota administered to homologous and heterologous hosts (i.
View Article and Find Full Text PDFMost of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species.
View Article and Find Full Text PDFAnimals are routinely colonized by microorganisms. Despite many studies documenting the microbial taxa associated with animals, the pattern and ecological determinants of among-animal variation in microbial communities are poorly understood. This study quantified the bacterial communities associated with natural populations of Drosophila melanogaster.
View Article and Find Full Text PDFDespite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2015
Most associations between animals and their gut microbiota are dynamic, involving sustained transfer of food-associated microbial cells into the gut and shedding of microorganisms into the external environment with feces, but the interacting effects of host and microbial factors on the composition of the internal and external microbial communities are poorly understood. This study on laboratory cultures of the fruit fly Drosophila melanogaster reared in continuous contact with their food revealed time-dependent changes of the microbial communities in the food that were strongly influenced by the presence and abundance of Drosophila. When germfree Drosophila eggs were aseptically added to nonsterile food, the microbiota in the food and flies converged to a composition dramatically different from that in fly-free food, showing that Drosophila has microbiota-independent effects on the food microbiota.
View Article and Find Full Text PDFStem cell niches are locations where stem cells reside and self-renew. Although studies have shown how niches maintain stem cell fate during tissue homeostasis, less is known about their roles in establishing stem cells. The adult Drosophila midgut is maintained by intestinal stem cells (ISCs); however, how they are established is unknown.
View Article and Find Full Text PDFDisruption of axis specification leads to defects in dorsal tissue patterning and cell movements. Here, we examine how beta-catenin coordinately affects gastrulation movements and dorsal mesoderm differentiation. The reduction of beta-catenin protein levels by morpholino oligonucleotides complementary to beta-catenin mRNA causes a disruption in gastrulation movements.
View Article and Find Full Text PDF