The aims of this study were: i) to investigate mature plant resistance (MPR) against four strains of Potato virus Y (PVY, PVY, PVY and PVY) in potato cultivars that differ in maturity (e.g. early or maincrop) at different developmental stages, and ii) to determine whether phloem translocation of photoassimilates at different stages including the source-sink transition influences MPR.
View Article and Find Full Text PDFThe control and interaction between nitrogen and carbon assimilatory pathways is essential in both photosynthetic and non-photosynthetic tissue in order to support metabolic processes without compromising growth. Physiological differences between the basal and mature region of wheat (Triticum aestivum) primary leaves confirmed that there was a change from heterotrophic to autotrophic metabolism. Fourier Transform Infrared (FT-IR) spectroscopy confirmed the suitability and phenotypic reproducibility of the leaf growth conditions.
View Article and Find Full Text PDFGlutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise).
View Article and Find Full Text PDFIn this study, we investigated whether changes in mitochondrial abundance, ultrastructure and activity are involved in the respiratory cold acclimation response in leaves of the cold-hardy plant Arabidopsis thaliana. Confocal microscopy [using plants with green fluorescence protein (GFP) targeted to the mitochondria] and transmission electron microscopy (TEM) were used to visualize changes in mitochondrial morphology, abundance and ultrastructure. Measurements of respiratory flux in isolated mitochondria and intact leaf tissue were also made.
View Article and Find Full Text PDFReverse-genetics was used to evaluate the role of an Arabidopsis homologue of the human and yeast FIS1 genes, which are both involved in mitochondrial fission. Two independent T-DNA insertion mutants of gene At3g57090 were identified and genetically transformed to express mitochondria-targeted GFP to enable visualization of mitochondria in vivo. Plants homozygous for either of the recessive T-DNA mutant alleles, termed bigyin1-1 (bgy1-1) and bigyin1-2 (bgy1-2), displayed an abnormal mitochondrial morphology.
View Article and Find Full Text PDFA mitochondrial-GFP construct was used to tag mitochondria fluorescently in a T-DNA knockout line for the Arabidopsis dynamin ADL2a. Visualization of mitochondria in vivo demonstrated that disruption of ADL2a affected mitochondrial morphology. Mitochondria in the mutant had a complex morphology; occasionally large spherical organelles could be seen, but, more frequently, the mitochondria adopted a tubular morphology with many constrictions along their length.
View Article and Find Full Text PDFLittle is known about the genetic control of mitochondrial morphology and dynamics in higher plants. We used a genetic screen involving fluorescence microscopic analysis of ethyl methane sulphonate (EMS)-mutated Arabidopsis thaliana seedlings expressing GFP targeted to mitochondria to isolate eight mutants displaying distinct perturbations of the normal mitochondrial morphology or distribution. We describe five mutants with distinct and unique mitochondrial phenotypes, which map to five different loci, not previously implicated in mitochondrial behaviour in plants.
View Article and Find Full Text PDF