Immune health requires innate and adaptive immune cells to engage precisely balanced pro- and anti-inflammatory forces. We employ the concept of chemical immunophenotypes to classify small molecules functionally or mechanistically according to their patterns of effects on primary innate and adaptive immune cells. The high-specificity, low-toxicity cyclin-dependent kinase 8 (CDK8) inhibitor 16-didehydro-cortistatin A (DCA) exerts a distinct tolerogenic profile in both innate and adaptive immune cells.
View Article and Find Full Text PDFThis Letter is being retracted owing to issues with Fig. 1d and Supplementary Fig. 31b, and the unavailability of original data for these figures that raise concerns regarding the integrity of the figures.
View Article and Find Full Text PDFWe previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
View Article and Find Full Text PDFAdvances in human genetics have dramatically expanded our understanding of complex heritable diseases. Genome-wide association studies have identified an allelic series of variants associated with increased risk of or protection from inflammatory bowel disease (IBD). The predisposing variant of CARD9 is associated with increased NF-κB-mediated cytokine production.
View Article and Find Full Text PDFPlasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides.
View Article and Find Full Text PDFBackground: Large-scale image sets acquired by automated microscopy of perturbed samples enable a detailed comparison of cell states induced by each perturbation, such as a small molecule from a diverse library. Highly multiplexed measurements of cellular morphology can be extracted from each image and subsequently mined for a number of applications.
Findings: This microscopy dataset includes 919 265 five-channel fields of view, representing 30 616 tested compounds, available at "The Cell Image Library" (CIL) repository.
Evidence suggests that specific mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) are critical for the initiation and maintenance of certain tumor types and that inhibiting these mutant enzymes with small molecules may be therapeutically beneficial. In order to discover mutant allele-selective IDH1 inhibitors with chemical features distinct from existing probes, we screened a collection of small molecules derived from diversity-oriented synthesis. The assay identified compounds that inhibit the IDH1-R132H mutant allele commonly found in glioma.
View Article and Find Full Text PDFIdentifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse.
View Article and Find Full Text PDFSalt-inducible kinases (SIKs) are promising therapeutic targets for modulating cytokine responses during innate immune activation. The study of SIK inhibition in animal models of disease has been limited by the lack of selective small-molecule probes suitable for modulating SIK function in vivo. We used the pan-SIK inhibitor HG-9-91-01 as a starting point to develop improved analogs, yielding a novel probe 5 (YKL-05-099) that displays increased selectivity for SIKs versus other kinases and enhanced pharmacokinetic properties.
View Article and Find Full Text PDFRadiotherapy is not currently informed by the genetic composition of an individual patient's tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages.
View Article and Find Full Text PDFPurpose: We used human stem and progenitor cells to develop a genetically accurate novel model of MYC-driven Group 3 medulloblastoma. We also developed a new informatics method, Disease-model Signature versus Compound-Variety Enriched Response ("DiSCoVER"), to identify novel therapeutics that target this specific disease subtype.
Experimental Design: Human neural stem and progenitor cells derived from the cerebellar anlage were transduced with oncogenic elements associated with aggressive medulloblastoma.
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes.
View Article and Find Full Text PDFChanges in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ∼19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts.
View Article and Find Full Text PDFHigh cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.
View Article and Find Full Text PDFCARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling.
View Article and Find Full Text PDFUnlabelled: Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.
View Article and Find Full Text PDFStudies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway.
View Article and Find Full Text PDFSmall-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science.
View Article and Find Full Text PDFThe balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation.
View Article and Find Full Text PDFDecitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.
View Article and Find Full Text PDFLysosomes perform a critical cellular function as a site of degradation for diverse cargoes including proteins, organelles, and pathogens delivered through distinct pathways, and defects in lysosomal function have been implicated in a number of diseases. Recent studies have elucidated roles for the lysosome in the regulation of protein synthesis, metabolism, membrane integrity, and other processes involved in homeostasis. Complex small-molecule natural products have greatly contributed to the investigation of lysosomal function in cellular physiology.
View Article and Find Full Text PDFNovel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor.
View Article and Find Full Text PDF