Publications by authors named "Alyce Mayfosh"

Uncomplicated topical skin infections like impetigo, caused by gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes, are a common global health issue, particularly affecting children. With increasing antimicrobial resistance, conventional treatments such as mupirocin are becoming ineffective, highlighting the necessity for new antimicrobial development. Fatty acids have long shown potential as novel antimicrobials, but their development has been limited by solubility and efficacy concerns in topical applications.

View Article and Find Full Text PDF

Here, we describe GS-9, a novel water-soluble fatty acid-based formulation comprising L-lysine and arachidonic acid, that we have shown to induce ferroptosis. GS-9 forms vesicle-like structures in solution and mediates lipid peroxidation, as evidenced by increased C11-BODIPY fluorescence and an accumulation of toxic malondialdehyde, a downstream product of lipid peroxidation. Ferroptosis inhibitors counteracted GS-9-induced cell death, whereas caspase 3 and 7 or MLKL knock-out cell lines are resistant to GS-9-induced cell death, eliminating other cell death processes such as apoptosis and necroptosis as the mechanism of action of GS-9.

View Article and Find Full Text PDF

Background And Aims: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined.

View Article and Find Full Text PDF

Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells.

View Article and Find Full Text PDF
Article Synopsis
  • Undecylenic acid, a fatty acid used as a topical antifungal, shows potential as an anti-cancer agent through a new formulation called GS-1, combined with L-Arginine.
  • This formulation causes tumor cell death in a dose-dependent manner by activating apoptotic mechanisms, indicated by changes in mitochondrial function.
  • GS-1 specifically targets lipid droplets within cells, countering previous findings that suggested these droplets protect against fatty acid toxicity, highlighting the role of Fatty Acid Transport Protein 2 (FATP2) in its uptake and action.
View Article and Find Full Text PDF

The environmental control of microbial pathogens currently relies on compounds that do not exert long-lasting activity on surfaces, are impaired by soil, and contribute to the growing problem of antimicrobial resistance. This study presents the scientific development and characterization of GS-2, a novel, water-soluble ammonium carboxylate salt of capric acid and L-arginine that demonstrates activity against a range of bacteria (particularly Gram-negative bacteria), fungi, and viruses. In real-world surface testing, GS-2 was more effective than a benzalkonium chloride disinfectant at reducing the bacterial load on common touch-point surfaces in a high-traffic building (average 1.

View Article and Find Full Text PDF

Heparanase is the only mammalian enzyme capable of cleaving heparan sulfate, a glycosaminoglycan of the extracellular matrix and cell surfaces. Most immune cells express heparanase that contributes to a range of functions including cell migration and cytokine expression. Heparanase also promotes natural killer (NK) cell migration; however, its role in other NK cell functions remains to be defined.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis.

View Article and Find Full Text PDF

Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate, a complex glycosaminoglycan found ubiquitously throughout mammalian cells and tissues. Heparanase has been strongly associated with important pathological processes including inflammatory disease and tumor metastasis, through its ability to promote various cellular functions such as cell migration, invasion, adhesion, and cytokine release. A number of cell types express heparanase including leukocytes, cells of the vasculature as well as tumor cells.

View Article and Find Full Text PDF

NK cells are highly efficient at preventing cancer metastasis but are infrequently found in the core of primary tumors. Here, have we demonstrated that freshly isolated mouse and human NK cells express low levels of the endo-β-D-glucuronidase heparanase that increase upon NK cell activation. Heparanase deficiency did not affect development, differentiation, or tissue localization of NK cells under steady-state conditions.

View Article and Find Full Text PDF