The annulus fibrosus-one of the two tissues comprising the intervertebral disc-is susceptible to injury and disease, leading to chronic pain and rupture. A synthetic, biodegradable material could provide a suitable scaffold that alleviates this pain and supports repair through tissue regeneration. The transfer of properties, particularly biomechanical, from scaffold to new tissue is essential and should occur at the same rate to prevent graft failure post-implantation.
View Article and Find Full Text PDFTreatments to alleviate chronic lower back pain, caused by intervertebral disc herniation as a consequence of degenerate annulus fibrosus (AF) tissue, fail to provide long-term relief and do not restore tissue structure or function. The future of AF tissue engineering relies on the production of its complex structure assisted by the many cells that are resident in the tissue. As such, this study aims to mimic the architecture and mechanical environment of outer AF tissue using electrospun fiber scaffolds made from a synthetic biopolymer blend of poly(ε-caprolactone) (PCL) and poly(L-lactic) acid (PLLA).
View Article and Find Full Text PDFNanomaterials (Basel)
April 2019
Treatments to alleviate chronic lower back pain, caused by intervertebral disc herniation as a consequence of degenerate annulus fibrosus (AF) tissue, fail to provide long-term relief and do not restore tissue structure or function. This study aims to mimic the architecture and mechanical environment of AF tissue using electrospun fiber scaffolds made from synthetic biopolymers-poly(ε-caprolactone) (PCL) and poly(L-lactic) acid (PLLA). Pure polymer and their blends (PCL%:PLLA%; 80:20, 50:50, and 20:80) are studied and material properties-fiber diameter, alignment, % crystallinity, tensile strength, and water contact angle-characterized.
View Article and Find Full Text PDF