Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus.
View Article and Find Full Text PDFWithin the hematopoietic system, the Notch pathway is critical for promoting thymic T cell development and suppressing the B and myeloid lineage fates; however, its impact on NK lymphopoiesis is less understood. To study the role of Notch during NK cell development in vivo, we investigated different NK cell compartments and function in Rbp-JkVav-Cre mice, in which , the major transcriptional effector of canonical Notch signaling, was specifically deleted in all hematopoietic cells. Peripheral conventional cytotoxic NK cells in -deleted mice were significantly reduced and had an activated phenotype.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny. Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells.
View Article and Find Full Text PDFAlthough it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular.
View Article and Find Full Text PDFAccording to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.
View Article and Find Full Text PDFNatural killer (NK) cells are cytotoxic lymphocytes and play a vital role in controlling viral infections and cancer. In contrast to B and T lymphopoiesis where cellular and regulatory pathways have been extensively characterized, the cellular stages of early human NK cell commitment remain poorly understood. Here we demonstrate that a Lin(-)CD34(+)CD38(+)CD123(-)CD45RA(+)CD7(+)CD10(+)CD127(-) population represents a NK lineage-restricted progenitor (NKP) in fetal development, umbilical cord blood, and adult tissues.
View Article and Find Full Text PDF