Hydrogels are biocompatible matrices for local delivery of nucleic acids; however, functional dopants are required to provide efficient delivery into cells. In particular, dendrimers, known as robust nucleic acid carriers, can be used as dopants. Herein, we report the first example of impregnating neutral hydrogels with siRNA-dendrimer complexes.
View Article and Find Full Text PDFThe conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin-spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of B isotope inside target cells, which are then destroyed after neutron irradiation. Nucleic acid aptamers look like very prospective candidates for carrying B to the tumor cells.
View Article and Find Full Text PDFDefects in human mitochondrial genome can cause a wide range of clinical disorders that still do not have efficient therapies. The natural pathway of small noncoding RNA import can be exploited to address therapeutic RNAs into the mitochondria. To create an approach of carrier-free targeting of RNA into living human cells, we designed conjugates containing a cholesterol residue and developed the protocols of chemical synthesis of oligoribonucleotides conjugated with cholesterol residue through cleavable pH-triggered hydrazone bond.
View Article and Find Full Text PDFOne of the ways to efficiently deliver various drugs, including therapeutic nucleic acids, into the cells is conjugating them with different transport ligands via labile or stable bonds. A convenient solid-phase approach for the synthesis of 5'-conjugates of oligonucleotides with biodegradable pH-sensitive hydrazone covalent bonds is proposed in this article. The approach relies on introducing a hydrazide of the ligand under aqueous/organic media to a fully protected support-bound oligonucleotide containing aldehyde function at the 5'-end.
View Article and Find Full Text PDFBoron clusters attract considerable attention as promising therapeutic tools for boron neutron capture therapy (BNCT). They combine high boron content with high chemical and biological stability, biorthogonality, and low toxicity. The development of oligonucleotide-based constructs and nucleic acid-like molecules, such as oligomeric phosphate diesters, bearing one or multiple boron clusters permits to create potential high boron-loaded agents for BNCT with good bioavailability, specifically interacting with nucleic acids inside the cell.
View Article and Find Full Text PDFThe ribosomal protein eL38 is a component of the mammalian translation machine. The deletion of the Rpl38 locus in mice results in the Tail-short (Ts) mutant phenotype characterized by a shortened tail and other defects in the axial skeleton development. Here, using the next-generation sequencing of total RNA from HEK293 cells knocked down of eL38 mRNA by transfection with specific siRNAs, we examined the effect of reduced eL38 content on genomic transcription.
View Article and Find Full Text PDFOligonucleotide conjugates with boron clusters have found applications in different fields of molecular biology, biotechnology, and biomedicine as potential agents for boron neutron capture therapy, siRNA components, and antisense agents. Particularly, the -dodecaborate anion represents a high-boron-containing residue with remarkable chemical stability and low toxicity, and is suitable for the engineering of different constructs for biomedicine and molecular biology. In the present work, we synthesized novel oligonucleotide conjugates of -dodecaborate attached to the 5'-, 3'-, or both terminal positions of DNA, RNA, 2'-O-Me RNA, and 2'-F-Py RNA oligomers.
View Article and Find Full Text PDFNucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers' research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases.
View Article and Find Full Text PDFWe report a novel bioluminescent aptasensor, which consists of 2'-F-RNA aptamer modules joined into a bi-specific aptamer construct. One aptamer module binds the analyte, then after structural rearrangement the second module recruits non-covalently Ca-dependent photoprotein obelin from the solution, thus providing a bioluminescent signal. This concept allows using free protein as a reporter, which brings such advantages as no need for aptamer-protein conjugation, a possibility of thermal re-folding of aptamer component with no harm to a protein, and simpler detection protocol.
View Article and Find Full Text PDFBiosensors that rely on aptamers as analyte-recognizing elements (also known as aptasensors) are gaining in popularity during recent years for analytical and biomedical applications. Among them, colorimetric ELISA-like systems seem very promising for biomarker detection in medical diagnostics. For their development, one should thoroughly consider the characteristics of the aptamers, with a particular focus on the secondary structure.
View Article and Find Full Text PDFWe report a universal straightforward strategy for the chemical synthesis of modified oligoribonucleotides containing functional groups of different structures at the 2' position of ribose. The on-column synthetic concept is based on the incorporation of two types of commercial nucleotide phosphoramidites containing orthogonal 2'--protecting groups, namely 2'--thiomorpholine-carbothioate (TC, as "permanent") and 2'---butyl(dimethyl)silyl (BDMS, as "temporary"), to RNA during solid-phase synthesis. Subsequently, the support-bound RNA undergoes selective deprotection and follows postsynthetic 2' functionalization of the naked hydroxyl group.
View Article and Find Full Text PDFAn imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed.
View Article and Find Full Text PDFCholesterol derivatives of nuclease-resistant, anti- small-interfering RNAs were designed to contain a 2'-OMe-modified 21-bp siRNA and a 63-bp TsiRNA in order to investigate their accumulation and silencing activity in vitro and in vivo. The results showed that increasing the length of the RNA duplex in such a conjugate increases its biological activity when delivered using a transfection agent. However, the efficiency of accumulation in human drug-resistant KB-8-5 cells during delivery in vitro in a carrier-free mode was reduced as well as efficiency of target gene silencing.
View Article and Find Full Text PDFA novel and convenient approach for the solid-phase 5'-functionalization of oligonucleotides is proposed in this article. The approach is based on the activation of free 5'-hydroxyl of polymer support-bound protected oligonucleotides by ,'-disuccinimidyl carbonate followed by interaction with amino-containing ligands. Novel amino-containing derivatives of -dodecaborate, estrone, cholesterol, and α-tocopherol were specially prepared.
View Article and Find Full Text PDFThe features of previously unexplored labile complexes of human 40S ribosomal subunits with RNAs, whose formation is manifested in the cross-linking of aldehyde derivatives of RNAs to the ribosomal protein uS3 through its peptide 55-64 located outside the mRNA channel, were studied by EPR spectroscopy methods. Analysis of subatomic 40S subunit models showed that a likely site for labile RNA binding is a cluster of positively charged amino acid residues between the mRNA entry site and uS3 peptide 55-64. This is consistent with our finding that the 3'-terminal mRNA fragment hanging outside the 40S subunit prevents the cross-linking of an RNA derivative to this peptide.
View Article and Find Full Text PDFNovel alternatives to traditional antibiotics are now of great demand for the successful treatment of microbial infections. Here, we present the engineering and properties of new oligonucleotide inhibitors of RNase P, an essential bacterial enzyme. The series of 2'--methyl RNA (2'-OMe-RNA) and phosphoryl guanidine oligonucleotides were targeted to the substrate-binding region of M1 RNA subunit of the RNase P.
View Article and Find Full Text PDFBioluminescent solid-phase sandwich-type microassay was developed to detect multiple sclerosis (MS)-associated autoantibodies in human sera. The assay is based on two different 2'-F-Py RNA aptamers against the target autoantibodies as biospecific elements, and Ca-regulated photoprotein obelin as a reporter. The paper describes elaboration of the assay and its application to 91 serum samples from patients with clinically definite MS and 86 ones from individuals healthy in terms of MS.
View Article and Find Full Text PDFAptamers are short DNA and RNA fragments which bind their molecular targets with affinity and specificity comparable to those of antibodies. Here, we describe the selection of novel 2'-F-RNA aptamers against total human hemoglobin or its glycated form HbA1c. After SELEX and high-throughput sequencing of the enriched libraries, affinities and specificities of candidate aptamers and their truncated variants were examined by the solid-phase bioluminescent assay.
View Article and Find Full Text PDFThis paper examines the complexation of anti-cancer small interfering RNAs (siRNAs) by cationic carbosilane dendrimers, and the interaction of the formed complexes with HeLa and HL-60 cancer cells. Stepwise formation of the complexes accompanied by the evolution of their properties has been observed through the increase of the charge ratio (dendrimer/siRNA). The complexes decrease the viability of both "easy-to-transfect" cells (HeLa) and "hard-to transfect" ones (HL-60), indicating a high potential of the cationic carbosilane dendrimers for siRNA delivery into tumor cells.
View Article and Find Full Text PDFThe objective of this study was to analyze the effects of fluorophores on the intracellular accumulation and biological activity of small interfering RNA (siRNA) and its cholesterol conjugates. In this study, we used stem-loop real-time PCR and calibration curves to quantitate cellular siRNA accumulation. Attachment of fluorophores significantly affected both the accumulation and biological activity of siRNA conjugates.
View Article and Find Full Text PDFIn this work, we report the assemblage of hydrogels from phosphorus dendrimers in the presence of biocompatible additives and the study of their interactions with nucleic acids. As precursors for hydrogels, phosphorus dendrimers of generations 1⁻3 based on the cyclotriphosphazene core and bearing ammonium or pyridinium acetohydrazones (Girard reagents) on the periphery have been synthesized. The gelation was done by the incubation of dendrimer solutions in water or phosphate-buffered saline in the presence of biocompatible additives (glucose, glycine or polyethylene glycol) to form physical gels.
View Article and Find Full Text PDFNucleic acid aptamers capable of selectively recognizing their target molecules have nowadays been established as powerful and tunable tools for biospecific applications, be it therapeutics, drug delivery systems or biosensors. It is now generally acknowledged that in vitro selection enables one to generate aptamers to almost any target of interest. However, the success of selection and the affinity of the resulting aptamers depend to a large extent on the nature and design of an initial random nucleic acid library.
View Article and Find Full Text PDFWe designed a multimeric nuclease-resistant 63-bp trimeric small-interfering RNA (tsiRNA) comprising in one duplex the sequence of siRNAs targeting mRNAs of MDR1, LMP2, and LMP7 genes. We show that such tsiRNA is able to suppress the expression of all the target genes independently and with high efficiency, acting via a Dicer-dependent mechanism. tsiRNA is diced into 42- and 21-bp duplexes inside the cell.
View Article and Find Full Text PDFIn this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes.
View Article and Find Full Text PDF