Publications by authors named "Alya Al-Shakaki"

Article Synopsis
  • Researchers studied gene expression variability in response to adeno-associated vectors (AAV) to see if certain genetic variants affect gene therapy effectiveness.
  • They analyzed 69,442 whole genome sequences from different populations and identified 5,564 potentially harmful mutations in 62 relevant genes, with 27 common variants.
  • The findings suggest that genetic differences among individuals can impact AAV therapy outcomes, indicating a need for genetic screening in future clinical trials.
View Article and Find Full Text PDF

Risk genes for Mendelian (single-gene) disorders (SGDs) are consistent across populations, but pathogenic risk variants that cause SGDs are typically population-private. The goal was to develop "QChip1," an inexpensive genotyping microarray to comprehensively screen newborns, couples, and patients for SGD risk variants in Qatar, a small nation on the Arabian Peninsula with a high degree of consanguinity. Over 10 variants in 8445 Qatari were identified for inclusion in a genotyping array containing 165,695 probes for 83,542 known and potentially pathogenic variants in 3438 SGDs.

View Article and Find Full Text PDF

Microvillus inclusion disease (MVID) is a rare autosomal recessive condition characterized by a lack of microvilli on the surface of enterocytes, resulting in severe, life-threatening diarrhea that could lead to mortality within the first year of life. We identify two unrelated families, each with one child presenting with severe MVID from birth. Using trio whole-exome sequencing, we observed that the two families share a novel nonsense variant (Glu1589*) in the gene, a type Vb myosin motor protein in which rare damaging mutations were previously described to cause MVID.

View Article and Find Full Text PDF

Macro- and microvascular complications of type 2 diabetes (T2D), obesity, and dyslipidemia share common metabolic pathways. In this study, using a total of 1,300 metabolites from 996 Qatari adults (57% with T2D) and 1,159 metabolites from an independent cohort of 2,618 individuals from the Qatar BioBank (11% with T2D), we identified 373 metabolites associated with T2D, obesity, retinopathy, dyslipidemia, and lipoprotein levels, 161 of which were novel. Novel metabolites included phospholipids, sphingolipids, lysolipids, fatty acids, dipeptides, and metabolites of the urea cycle and xanthine, steroid, and glutathione metabolism.

View Article and Find Full Text PDF

Purpose: Human serine/threonine kinase 4 (STK4) deficiency is a rare, autosomal recessive genetic disorder leading to combined immunodeficiency; however, the extent to which immune signaling and host defense are impaired is unclear. We assessed the functional consequences of a novel, homozygous nonsense STK4 mutation (NM_006282.2:c.

View Article and Find Full Text PDF

The effectiveness of next generation sequencing at solving genetic disease has motivated the rapid adoption of this technology into clinical practice around the world. In this study, we use whole exome sequencing (WES) to assess 48 patients with Mendelian disease from 30 serial families as part of the "Qatar Mendelian Disease pilot program" - a coordinated multi-center effort to build capacity and clinical expertise in genetic medicine in Qatar. By enrolling whole families (parents plus available siblings), we demonstrate significantly improved discriminatory power for candidate variant identification over trios for both de novo and recessive inheritance patterns.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) susceptibility is influenced by genetic and lifestyle factors. To date, the majority of genetic studies of T2D have been in populations of European and Asian descent. The focus of this study is on genetic variations underlying T2D in Qataris, a population with one of the highest incidences of T2D worldwide.

View Article and Find Full Text PDF

Purpose: Nonobstructive azoospermia (NOA) affects 1% of the male population; however, despite state-of-the-art clinical assessment, for most patients the cause is unknown. We capitalized on an analysis of multiplex families in the Middle East to identify highly penetrant genetic causes.

Methods: We used whole-exome sequencing (WES) in 8 consanguineous families and combined newly discovered genes with previously reported ones to create a NOA gene panel, which was used to identify additional variants in 75 unrelated idiopathic NOA subjects and 74 fertile controls.

View Article and Find Full Text PDF

Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants.

View Article and Find Full Text PDF

Background: Ligase IV syndrome, a hereditary disease associated with compromised DNA damage response mechanisms, and Urofacial syndrome, caused by an impairment of neural cell signaling, are both rare genetic disorders, whose reports in literature are limited. We describe the first case combining both disorders in a specific phenotype.

Case Presentation: We report a case of a 7-year old girl presenting with a complex phenotype characterized by multiple congenital abnormalities and dysmorphic features, microcephaly, short stature, combined immunodeficiency and severe vesicoureteral reflux.

View Article and Find Full Text PDF

Reaching the full potential of precision medicine depends on the quality of personalized genome interpretation. In order to facilitate precision medicine in regions of the Middle East and North Africa (MENA), a population-specific genome for the indigenous Arab population of Qatar (QTRG) was constructed by incorporating allele frequency data from sequencing of 1,161 Qataris, representing 0.4% of the population.

View Article and Find Full Text PDF

Background: The prevalence of type 2 diabetes (T2D) is increasing in the Middle East. However, the genetic risk factors for T2D in the Middle Eastern populations are not known, as the majority of studies of genetic risk for T2D are in Europeans and Asians.

Methods: All subjects were ≥3 generation Qataris.

View Article and Find Full Text PDF