Publications by authors named "Alwin Schuller"

Arginase is a promising immuno-oncology target that can restore the innate immune response. However, it's highly polar active site often requires potent inhibitors to mimic amino acids, leading to poor passive permeability and low oral exposure. Using structure-based drug design, we discovered a novel proline-based arginase inhibitor () that was potent but had low oral bioavailability in rat.

View Article and Find Full Text PDF

Arginase is an enzyme responsible for converting arginine, a semi-essential amino acid, to ornithine and urea. Arginine depletion suppresses immunity via multiple mechanisms including inhibition of T-cell and NK cell proliferation and activity. Arginase inhibition is therefore an attractive mechanism to potentially reverse immune suppression and thus has been explored as a therapy for oncology and respiratory indications.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found out that a substance called adenosine helps certain pancreatic cancer cells avoid being attacked by the immune system, making it harder to treat the cancer with immunotherapy.
  • They used special tests on mice with pancreatic cancer to study how this adenosine affects the environment around the tumor and how immune cells behave there.
  • The researchers discovered that blocking adenosine can slow down tumor growth and make other cancer treatments work better by changing how immune cells are present in the tumor area.
View Article and Find Full Text PDF
Article Synopsis
  • Antitumor immunity can be weakened by immunosuppressive factors in tumors, particularly through the action of arginase-expressing cells that reduce l-arginine, crucial for T-cell and NK cell function.
  • AZD0011 is introduced as a new oral ARG inhibitor that, when used alone, can boost arginine levels, activate immune cells, and reduce tumor growth in various models.
  • Combining AZD0011 with anti-PD-L1 therapy enhances immune responses against tumors and shows promise in combination with other treatments like anti-NKG2A and type I IFN inducers, indicating potential for improved cancer immunotherapy strategies.
View Article and Find Full Text PDF

Osimertinib is a third-generation, irreversible, oral EGFR tyrosine kinase inhibitor (TKI) recommended as first-line treatment for patients with locally advanced/metastatic EGFR mutation-positive (EGFRm) non-small cell lung cancer (NSCLC). However, MET amplification/overexpression is a common acquired osimertinib resistance mechanism. Savolitinib is an oral, potent, and highly selective MET-TKI; preliminary data suggest that combining osimertinib with savolitinib may overcome MET-driven resistance.

View Article and Find Full Text PDF

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action.

View Article and Find Full Text PDF

The clinical efficacy of epidermal growth factor receptor (EGFR)–targeted therapy in -mutant non–small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor () proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent mutation and amplification are historically thought to be codependent on the activation of both oncogenes.

View Article and Find Full Text PDF

Dual Bcl-2/Bcl-x inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-x inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer.

View Article and Find Full Text PDF

Background And Purpose: Savolitinib (AZD6094, HMPL-504, volitinib) is an oral, potent, and highly MET receptor TK inhibitor. This series of studies aimed to develop a pharmacokinetic-pharmacodynamic (PK/PD) model to link inhibition of MET phosphorylation (pMET) by savolitinib with anti-tumour activity.

Experimental Approach: Cell line-derived xenograft (CDX) experiments using human lung cancer (EBC-1) and gastric cancer (MKN-45) cells were conducted in athymic nude mice using a variety of doses and schedules of savolitinib.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting Bcl-2 family proteins is vital for cancer treatment, prompting the development of AZD4320, a dual inhibitor that effectively addresses resistance mechanisms, particularly from Bcl-x.
  • Through structure-based chemistry, AZD4320 was designed to bind strongly to Bcl-2 and Bcl-x, leading to enhanced apoptosis in cancer cells, especially in acute myeloid leukemia (AML).
  • Initial results show that AZD4320 can shrink tumors while temporarily lowering platelet counts, which recovers quickly, indicating its promise as a weekly treatment option across various cancers linked to Bcl-2 dysregulation.
View Article and Find Full Text PDF

Unlabelled: Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated.

View Article and Find Full Text PDF

Background: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR).

View Article and Find Full Text PDF

Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development.

View Article and Find Full Text PDF

There is a pressing need for more effective therapies to treat patients with T-cell lymphomas (TCLs), including first-line approaches that increase the response rate to cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) chemotherapy. We characterized the mitochondrial apoptosis pathway in cell lines and patient-derived xenograft (PDX) models of TCL and assessed the in vitro efficacy of BH3 mimetics, including the BCL2 inhibitor venetoclax, the BCL2/BCL-xL inhibitor navitoclax, and the novel MCL1 inhibitor AZD5991. The abundance of antiapoptotic BCL2 family members based on immunoblotting or RNA transcript levels correlated poorly with the activity of BH3 mimetics.

View Article and Find Full Text PDF

Background: T-cell checkpoint blockade and MEK inhibitor combinations are under clinical investigation. Despite progress elucidating the immuno-modulatory effects of MEK inhibitors as standalone therapies, the impact of MEK inhibition on the activity of T-cell checkpoint inhibitors remains incompletely understood. Here we sought to characterize the combined effects of MEK inhibition and anti-CTLA-4 mAb (anti-CTLA-4) therapy, examining effects on both T-cells and tumor microenvironment (TME).

View Article and Find Full Text PDF

The emergence of EGFR inhibitors such as gefitinib, erlotinib, and osimertinib has provided novel treatment opportunities in EGFR-driven non-small cell lung cancer (NSCLC). However, most patients with EGFR-driven cancers treated with these inhibitors eventually relapse. Recent efforts have identified the canonical Wnt pathway as a mechanism of protection from EGFR inhibition and that inhibiting tankyrase, a key player in this pathway, is a potential therapeutic strategy for the treatment of EGFR-driven tumors.

View Article and Find Full Text PDF

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC.

View Article and Find Full Text PDF

Background: Dysregulation of the canonical Wnt signaling pathway has been implicated in colorectal cancer (CRC) development as well as incipient stages of malignant transformation. In this study, we investigated the antitumor effects of AZ1366 (a novel tankyrase inhibitor) as a single agent and in combination with irinotecan in our patient derived CRC explant xenograft models.

Results: Six out of 18 CRC explants displayed a significant growth reduction to AZ1366.

View Article and Find Full Text PDF

Purpose: Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models.

View Article and Find Full Text PDF

Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic molecules are not sufficiently potent to elicit significant response in patients, particularly for dimeric antibody agonists that require secondary cross-linking via Fcγ receptors expressed on immune cells to achieve optimal clustering of DR5.

View Article and Find Full Text PDF

Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure.

View Article and Find Full Text PDF

Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion.

View Article and Find Full Text PDF

HER2/HER3 dimerization resulting from overexpression of HER2 or neuregulin (NRG1) in cancer leads to HER3-mediated oncogenic activation of phosphoinositide 3-kinase (PI3K) signaling. Although ligand-blocking HER3 antibodies inhibit NRG1-driven tumor growth, they are ineffective against HER2-driven tumor growth because HER2 activates HER3 in a ligand-independent manner. In this study, we describe a novel HER3 monoclonal antibody (LJM716) that can neutralize multiple modes of HER3 activation, making it a superior candidate for clinical translation as a therapeutic candidate.

View Article and Find Full Text PDF

Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition.

View Article and Find Full Text PDF

Disregulated Wnt/beta-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins.

View Article and Find Full Text PDF