Dynamic epigenetic modifications play a key role in mediating the expression of genes required for neuronal development. We previously identified nitric oxide (NO) as a signaling molecule that mediates S-nitrosylation of histone deacetylase 2 (HDAC2) and epigenetic changes in neurons. Here, we show that HDAC2 nitrosylation regulates neuronal radial migration during cortical development.
View Article and Find Full Text PDFMesial temporal lobe epilepsy (mTLE) is a chronic neurological disorder characterized by recurrent seizures. The pathogenic mechanisms underlying mTLE may involve defects in the post-transcriptional regulation of gene expression. MicroRNAs (miRNAs) are non-coding RNAs that control the expression of genes at the post-transcriptional level.
View Article and Find Full Text PDFReproduction in mammals is dependent on the function of specific neurons that secrete gonadotropin-releasing hormone-1 (GnRH-1). These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. Alterations in this migratory process lead to defective GnRH-1 secretion, resulting in heterogeneous genetic disorders such as idiopathic hypogonadotropic hypogonadism (IHH), and other reproductive diseases characterized by the reduction or failure of sexual competence.
View Article and Find Full Text PDFTo establish axonal connections growth cones must navigate multiple intermediate targets before reaching their final target. During this journey growth cones are guided by extracellular repulsive and attractive signals. Although initially identified as repulsive molecules, members of the semaphorin family include both attractants and repellents.
View Article and Find Full Text PDFIn meiotic prophase of male placental mammals, the heterologous X and Y chromosomes remain largely unsynapsed, which activates meiotic sex chromosome inactivation (MSCI), leading to formation of the transcriptionally silenced XY body. MSCI is most likely related to meiotic silencing of unsynapsed chromatin (MSUC), a mechanism that can silence autosomal unsynapsed chromatin. However, heterologous synapsis and escape from silencing also occur.
View Article and Find Full Text PDFBackground: about 15% to 30% of the DNA in human sperm is packed in nucleosomes and transmission of this fraction to the embryo potentially serves as a mechanism to facilitate paternal epigenetic programs during embryonic development. However, hitherto it has not been established whether these nucleosomes are removed like the protamines or indeed contribute to paternal zygotic chromatin, thereby potentially contributing to the epigenome of the embryo.
Results: to clarify the fate of sperm-derived nucleosomes we have used the deposition characteristics of histone H3 variants from which follows that H3 replication variants present in zygotic paternal chromatin prior to S-phase originate from sperm.
Background: Among ICSI children de novo structural chromosome aberrations of male descent are increased. Misrepair of double-strand DNA breaks (DSBs) is a prerequisite for such aberrations to occur. To date, no absolute assessment of the number of DSBs in human sperm nuclei after gamete fusion has been described.
View Article and Find Full Text PDFIn mammalian males, the first meiotic prophase is characterized by formation of a separate chromatin domain called the sex body. In this domain, the X and Y chromosomes are partially synapsed and transcriptionally silenced, a process termed meiotic sex-chromosome inactivation (MSCI). Likewise, unsynapsed autosomal chromatin present during pachytene is also silenced (meiotic silencing of unsynapsed chromatin, MSUC).
View Article and Find Full Text PDFIn the mouse, the paternal post-meiotic chromatin is assumed to be devoid of DNA repair after nuclear elongation and protamine-induced compaction. Hence, DNA lesions induced thereafter will have to be restored upon gamete fusion in the zygote. Misrepair of such lesions often results in chromosome type aberrations at the first cleavage division, suggesting that the repair event takes place prior to S-phase.
View Article and Find Full Text PDFIn mammalian fertilization, the paternal genome is delivered to the secondary oocyte by sperm with protamine compacted DNA, while the maternal genome is arrested in meiotic metaphase II. Thus, at the beginning of fertilization, the two gametic chromatin sets are strikingly different. We elaborate on this contrast by reporting asymmetry for histone H3 type in the pre-S-phase zygote when male chromatin is virtually devoid of histone H3.
View Article and Find Full Text PDFMethylation of position-specific lysine residues in histone N termini is a central modification for regulating epigenetic transitions in chromatin. Each methylatable lysine residue can exist in a mono-, di-, or trimethylated state, thereby extending the indexing potential of this particular modification. Here, we examine all possible methylation states for histone H3 lysine 9 (H3-K9) and lysine 27 (H3-K27) in mammalian chromatin.
View Article and Find Full Text PDFBackground: Histone H3 lysine 9 (H3-K9) methylation and DNA methylation are characteristic hallmarks of mammalian heterochromatin. H3-K9 methylation was recently shown to be a prerequisite for DNA methylation in Neurospora crassa and Arabidopsis thaliana. Currently, it is unknown whether a similar dependence exists in mammalian organisms.
View Article and Find Full Text PDF