Perfusion operation mode remains the preferred platform for production of labile biopharmaceuticals (e.g., blood factors) and is also being increasingly adopted for production of stable products (e.
View Article and Find Full Text PDFThe particle and fluid dynamics in a rotating cylindrical filtration (RCF) system used for animal cell retention in perfusion processes was studied. A validated CFD model was used and the results gave numerical evidence of phenomena that had been earlier claimed, but not proven for this kind of application under turbulent and high mesh permeability conditions, such as bidirectional radial exchange flow (EF) through the filter mesh and particle (cells) lateral migration. Taylor vortices were shown to cause EF 10-100 times higher than perfusion flow, indicating that EF is the main drag source, at least in early stages of RCF operation.
View Article and Find Full Text PDFIn the present work, the main fluid flow features inside a rotating cylindrical filtration (RCF) system used as external cell retention device for animal cell perfusion processes were investigated using particle image velocimetry (PIV). The motivation behind this work was to provide experimental fluid dynamic data for such turbulent flow using a high-permeability filter, given the lack of information about this system in the literature. The results shown herein gave evidence that, at the boundary between the filter mesh and the fluid, a slip velocity condition in the tangential direction does exist, which had not been reported in the literature so far.
View Article and Find Full Text PDFIn the present work Computational Fluid Dynamics (CFD) was used to study the flow field and particle dynamics in an internal spin-filter (SF) bioreactor system. Evidence of a radial exchange flow through the filter mesh was detected, with a magnitude up to 130-fold higher than the perfusion flow, thus significantly contributing to radial drag. The exchange flow magnitude was significantly influenced by the filter rotation rate, but not by the perfusion flow, within the ranges evaluated.
View Article and Find Full Text PDF