The bacterium Pantoea ananatis is associated with devastating plant diseases that cause serious economic losses. Strain DZ-12 was previously isolated from maize brown rot leaves in Hebei Province, China and its genome sequencing revealed that it belongs to P. ananatis.
View Article and Find Full Text PDFMany species of plant-pathogenic gram-negative bacteria deploy the type III (T3) secretion system to secrete virulence components, which are mostly characteristic of protein effectors targeting the cytosol of the plant cell following secretion. pv. (), a rice pathogen causing bacterial blight disease, uses the T3 accessory protein HrpE to assemble the pilus pathway, which in turn secretes transcription activator-like (TAL) effectors.
View Article and Find Full Text PDFAbiotic stress in plants pose a major threat to cereal crop production worldwide and cold stress is also notorious for causing a decrease in plant growth and yield in wheat. The present study was designed to alleviate cold stress on plants by inoculating psychrophilic PGPR bacteria belonging to Bacillus genera isolated from extreme rhizospheric environments of Qinghai-Tibetan plateau. The genetic screening of psychrophilic spp.
View Article and Find Full Text PDFis a notorious pathogen that causes Fusarium head blight (FHB) in cereal crops. It produces secondary metabolites, such as deoxynivalenol, diminishing grain quality and leading to lesser crop yield. Many strategies have been developed to combat this pathogenic fungus; however, considering the lack of resistant cultivars and likelihood of environmental hazards upon using chemical pesticides, efforts have shifted toward the biocontrol of plant diseases, which is a sustainable and eco-friendly approach.
View Article and Find Full Text PDFTo develop an effective biological agent to control Sclerotinia sclerotiorum, three endophytic Bacillus spp. strains with high antagonistic activity were isolated from maize seed and characterized. In vitro assays revealed that the Bacillus endophytes could produce volatile organic compounds (VOC) that reduced sclerotial production and inhibited mycelial growth of S.
View Article and Find Full Text PDF