Daily, the retinal pigment epithelium (RPE) ingests a bolus of lipid and protein in the form of phagocytized photoreceptor outer segments (OS). The RPE, like the liver, expresses enzymes required for fatty acid oxidation and ketogenesis. This suggests that these pathways play a role in the disposal of lipids from ingested OS, as well as providing a mechanism for recycling metabolic intermediates back to the outer retina.
View Article and Find Full Text PDFA main requisite in the phagocytosis of ingested material is a coordinated series of maturation steps which lead to the degradation of ingested cargo. Photoreceptor outer segment (POS) renewal involves phagocytosis of the distal disk membranes by the retinal pigment epithelium (RPE). Previously, we identified melanoregulin (MREG) as an intracellular cargo-sorting protein required for the degradation of POS disks.
View Article and Find Full Text PDFAggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its β2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells lacking either LFA-1 or cholesterol.
View Article and Find Full Text PDFCathepsin-D (Cat-D) is a major proteolytic enzyme in phagocytic cells. In the retinal pigment epithelium (RPE), it is responsible for the daily degradation of photoreceptor outer segments (POSs) to maintain retinal homeostasis. Melanoregulin (MREG)-mediated loss of phagocytic capacity has been linked to diminished intracellular Cat-D activity.
View Article and Find Full Text PDFArrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4.
View Article and Find Full Text PDFThe hypothesis is tested that enhanced green fluorescent protein (EGFP) can be used to quantify the aqueous spaces of living cells, using as a model transgenic Xenopus rods. Consistent with the hypothesis, regions of rods having structures that exclude EGFP, such as the mitochondrial-rich ellipsoid and the outer segments, have highly reduced EGFP fluorescence. Over a 300-fold range of expression the average EGFP concentration in the outer segment was approximately half that in the most intensely fluorescent regions of the inner segment, in quantitative agreement with prior X-ray diffraction estimates of outer segment cytoplasmic volume.
View Article and Find Full Text PDF