Publications by authors named "Alvin Han"

Introduction: To ensure there is adequate investment into diagnostics, an understanding of the magnitude of impact and return on investment is necessary. We, therefore, sought to understand the health and economic impacts of the molecular diagnostic programme in South Africa, to deepen the understanding of the broad value of diagnostics and guide future healthcare investments.

Methods: We calculated the 10-year (where data were available) total cost and disability-adjusted life-years (DALYs) averted associated with molecular testing for tuberculosis diagnosis (2013-2022), HIV viral load monitoring (2013-2022), early infant diagnosis of HIV infection (2013-2022) and SARS-CoV-2 testing (2020-2022), based on the actual number of molecular tests conducted in South Africa for the respective time periods.

View Article and Find Full Text PDF

Places of worship serve as a venue for both mass and routine gathering around the world, and therefore are associated with risk of large-scale SARS-CoV-2 transmission. However, such routine gatherings also offer an opportunity to distribute self-tests to members of the community to potentially help mitigate transmission and reduce broader community spread of SARS-CoV-2. Over the past four years, self-testing strategies have been an impactful tool for countries' response to the COVID-19 pandemic, especially early on to mitigate the spread when vaccination and treatment options were limited.

View Article and Find Full Text PDF

Despite intensive study, much remains unknown about the dynamics of seasonal influenza virus epidemic establishment and spread in the United States (US) each season. By reconstructing transmission lineages from seasonal influenza virus genomes collected in the US from 2014 to 2023, we show that most epidemics consisted of multiple distinct transmission lineages. Spread of these lineages exhibited strong spatiotemporal hierarchies and lineage size was correlated with timing of lineage establishment in the US.

View Article and Find Full Text PDF

Background: After initial COVID-19, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC.

Methods: RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands.

View Article and Find Full Text PDF

Since the influenza pandemic in 1968, influenza A(H3N2) viruses have become endemic. In this state, H3N2 viruses continuously evolve to overcome immune pressure as a result of prior infection or vaccination, as is evident from the accumulation of mutations in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, phylogenetic studies have also demonstrated ongoing evolution in the influenza A(H3N2) virus RNA polymerase complex genes.

View Article and Find Full Text PDF

Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed.

View Article and Find Full Text PDF

Objectives: To determine the most epidemiologically effective and cost-effective school-based SARS-CoV-2 antigen-detection rapid diagnostic test (Ag-RDT) self-testing strategies among teachers and students.

Design: Mathematical modelling and economic evaluation.

Setting And Participants: Simulated school and community populations were parameterised to Brazil, Georgia and Zambia, with SARS-CoV-2 self-testing strategies targeted to teachers and students in primary and secondary schools under varying epidemic conditions.

View Article and Find Full Text PDF

During the COVID-19 pandemic, levels of seasonal influenza virus circulation were unprecedentedly low, leading to concerns that a lack of exposure to influenza viruses, combined with waning antibody titres, could result in larger and/or more severe post-pandemic seasonal influenza epidemics. However, in most countries the first post-pandemic influenza season was not unusually large and/or severe. Here, based on an analysis of historical influenza virus epidemic patterns from 2002 to 2019, we show that historic lulls in influenza virus circulation had relatively minor impacts on subsequent epidemic size and that epidemic size was more substantially impacted by season-specific effects unrelated to the magnitude of circulation in prior seasons.

View Article and Find Full Text PDF

Oral antivirals have the potential to reduce the public health burden of COVID-19. However, now that we have exited the emergency-phase of the COVID-19 pandemic, declining SARS-CoV-2 clinical testing rates (average testing rates = [Formula: see text]10 tests/100,000 people/day in low-and-middle income countries; <100 tests/100,000 people/day in high-income countries; September 2023) make the development of effective test-and-treat programs challenging. We used an agent-based model to investigate how testing rates and strategies affect the use and effectiveness of oral antiviral test-to-treat programs in four country archetypes of different income levels and demographies.

View Article and Find Full Text PDF

Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health.

View Article and Find Full Text PDF

The influenza A virus (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (polymerase basic protein 2, polymerase basic protein 1, and polymerase acidic protein). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits.

View Article and Find Full Text PDF

The influenza A (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (PB2, PB1, and PA). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits.

View Article and Find Full Text PDF

The first step in SARS-CoV-2 genomic surveillance is testing to identify people who are infected. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (mean = 27 tests per 100,000 people per day). We simulated COVID-19 epidemics in a prototypical low- and middle-income country to investigate how testing rates, sampling strategies and sequencing proportions jointly impact surveillance outcomes, and showed that low testing rates and spatiotemporal biases delay time to detection of new variants by weeks to months and can lead to unreliable estimates of variant prevalence, even when the proportion of samples sequenced is increased.

View Article and Find Full Text PDF

Background: During the first two years of the COVID-19 pandemic, the circulation of seasonal influenza viruses was unprecedentedly low. This led to concerns that the lack of immune stimulation to influenza viruses combined with waning antibody titres could lead to increased susceptibility to influenza in subsequent seasons, resulting in larger and more severe epidemics.

Methods: We analyzed historical influenza virus epidemiological data from 2003-2019 to assess the historical frequency of near-absence of seasonal influenza virus circulation and its impact on the size and severity of subsequent epidemics.

View Article and Find Full Text PDF

Oral antivirals have the potential to reduce the public health burden of COVID-19. However, now that we have exited the emergency phase of the COVID-19 pandemic, declining SARS-CoV-2 clinical testing rates (average testing rates = ≪10 tests/100,000 people/day in low- and-middle income countries; <100 tests/100,000 people/day in high-income countries; September 2023) make the development of effective test-and-treat programs challenging. We used an agent-based model to investigate how testing rates and strategies affect the use and effectiveness of oral antiviral test-to-treat programs in four country archetypes of different income levels and demographies.

View Article and Find Full Text PDF

Background: Increasing the availability of antigen rapid diagnostic tests (Ag-RDTs) in low- and middle-income countries (LMICs) is key to alleviating global SARS-CoV-2 testing inequity (median testing rate in December 2021-March 2022 when the Omicron variant was spreading in multiple countries: high-income countries = 600 tests/100 000 people/day; LMICs = 14 tests/100 000 people/day). However, target testing levels and effectiveness of asymptomatic community screening to impact SARS-CoV-2 transmission in LMICs are unclear.

Methods: We used Propelling Action for Testing and Treating (PATAT), an LMIC-focused agent-based model to simulate coronavirus disease 2019 (COVID-19) epidemics, varying the amount of Ag-RDTs available for symptomatic testing at healthcare facilities and asymptomatic community testing in different social settings.

View Article and Find Full Text PDF

Background: Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, the Alpha, Beta, Gamma, and Delta VOCs circulated widely between September 2020 and August 2021. We sought to elucidate how various control measures, including targeted flight restrictions, had impacted the introduction and spread of these VOCs in the Netherlands.

View Article and Find Full Text PDF

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates.

View Article and Find Full Text PDF

Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East.

View Article and Find Full Text PDF

Background: Symptoms of post-acute sequelae of COVID-19 (PASC) may improve following SARS-CoV-2 vaccination. However few prospective data that also explore the underlying biological mechanism are available. We assessed the effect of vaccination on symptomatology of participants with PASC, and compared antibody dynamics between those with and without PASC.

View Article and Find Full Text PDF

The first step in SARS-CoV-2 genomic surveillance is testing to identify infected people. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (LMICs) (mean = 27 tests/100,000 people/day). We simulated COVID-19 epidemics in a prototypical LMIC to investigate how testing rates, sampling strategies, and sequencing proportions jointly impact surveillance outcomes and showed that low testing rates and spatiotemporal biases delay time-to-detection of new variants by weeks-to-months and can lead to unreliable estimates of variant prevalence even when the proportion of samples sequenced is increased.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study of 113 individuals with mild to moderate COVID-19, 49.2% tested positive for fecal SARS-CoV-2 RNA within the first week, and some continued to shed the virus in their feces for several months after diagnosis.
  • * The presence of gastrointestinal symptoms like abdominal pain and nausea was found to correlate with fecal shedding, indicating that the virus may infect the GI tract and that this infection can last longer in some patients.
View Article and Find Full Text PDF

Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, Alpha, Beta, Gamma and Delta variants circulated widely between September 2020 and August 2021. To understand how various control measures had impacted the spread of these VOCs, we analyzed 39,844 SARS-CoV-2 genomes collected under the Dutch national surveillance program.

View Article and Find Full Text PDF
Article Synopsis
  • A significant COVID-19 outbreak occurred in the Netherlands after nightclubs reopened and lifted distancing rules, even though negative tests or vaccinations were required for entry.
  • The event highlights how quickly new variants can spread in mostly unvaccinated groups when public health restrictions are eased.
  • Following this incident, we observed ongoing community spread of the identified virus strain.
View Article and Find Full Text PDF

The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose-sparing strategies. Here, we evaluate the SARS-CoV-2-specific antibody responses following BNT162b2 vaccination in 150 previously SARS-CoV-2-infected individuals from a population-based cohort. One week after first vaccine dose, spike protein antibody levels are 27-fold higher and neutralizing antibody titers 12-fold higher, exceeding titers of fully vaccinated SARS-CoV-2-naive controls, with minimal additional boosting after the second dose.

View Article and Find Full Text PDF