Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.
View Article and Find Full Text PDFLiCoO (LCO) is widely applied in today's rechargeable battery markets for consumer electronic devices. However, LCO operations at high voltage are hindered by accelerated structure degradation and electrode/electrolyte interface decomposition. To overcome these challenges, co-modified LCO (defined as CB-Mg-LCO) that couples pillar structures with interface shielding are successfully synthesized for achieving high-energy-density and structurally stable cathode material.
View Article and Find Full Text PDFLi- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes.
View Article and Find Full Text PDFSurface reconstruction of Ni-rich layered oxides (NLO) degrades the cycling stability and safety of high-energy-density lithium-ion batteries (LIBs), which challenges typical surface-modification approaches to build a robust interface with electrochemical activity. Here, a strategy of leveraging the low-strain analogues of Li- and Mn-rich layered oxides (LMR) to reconstruct a stable surface on the Ni-rich layered cathodes is proposed. The new surface structure not only consists of a gradient chemical composition but also contains a defect-rich structure regarding the formation of oxygen vacancies and cationic ordering, which can simultaneously facilitate lithium diffusion and stabilize the crystal structure during the (de)lithiation.
View Article and Find Full Text PDFMechanical integrity issues such as particle cracking are considered one of the leading causes of structural deterioration and limited long-term cycle stability for Ni-rich cathode materials of Li-ion batteries. Indeed, the detrimental effects generated from the crack formation are not yet entirely addressed. Here, applying physicochemical and electrochemical ex situ and in situ characterizations, the effect of Co and Mn on the mechanical properties of the Ni-rich material are thoroughly investigated.
View Article and Find Full Text PDFHigh-energy density lithium-rich layered oxides are among the most promising candidates for next-generation energy storage. Unfortunately, these materials suffer from severe electrochemical degradation that includes capacity loss and voltage decay during long-term cycling. Present research efforts are primarily focused on understanding voltage decay phenomena while origins for capacity degradation have been largely ignored.
View Article and Find Full Text PDFLi-CO batteries with dual efficacy for greenhouse gas CO sequestration and high energy output have been regarded as a promising electrochemical energy storage technology. However, battery feasibility has been hampered by inferior electrochemical performance due to large overpotentials and low cyclability primarily caused by the difficult decomposition of ultra-stable Li CO during charge. The use of cathode catalysts has been highlighted as a promising solution and catalyst properties, as well as the nature of discharge products, are closely correlated with electrochemical performance.
View Article and Find Full Text PDFThe search for batteries with high energy density has highlighted lithium-rich manganese-based layered oxides due to their exceptionally high capacity. Although it is clear that both cationic and anionic redox are present in the charge compensation mechanism, the microstructural evolution of the LiMnO-like phase during anionic redox and its role in battery performance and structural stability are still not fully understood. Here, we systematically probe microstructural evolution using spatially resolved synchrotron X-ray measurements and reveal an underlying interaction between the LiMnO-like domains and bulk rhombohedral structure.
View Article and Find Full Text PDFLi dendrites are considered as the primary cause for degradation and inevitable short circuit in lithium-metal batteries (LMBs). Although contemporary strategies have shown potential for addressing dendrite growth, none have achieved complete elimination. In this paper, a dendrite-free, three-dimensional, ordered, macro/mesoporous Cu/Zn current collector was prepared using a combination of simple colloidal crystal template and electrochemical method (electrodeposition and pulse plating).
View Article and Find Full Text PDFSingle-crystal cathode materials for lithium-ion batteries have attracted increasing interest in providing greater capacity retention than their polycrystalline counterparts. However, after being cycled at high voltages, these single-crystal materials exhibit severe structural instability and capacity fade. Understanding how the surface structural changes determine the performance degradation over cycling is crucial, but remains elusive.
View Article and Find Full Text PDFThe need for high-energy batteries has driven the development of binder-free electrode architectures. However, the weak bonding between the electrode particles and the current collector cannot withstand the severe volume change of active materials upon battery cycling, which largely limit the large-scale application of such electrodes. Using tin nanoarrays electrochemically deposited on copper substrate as an example, here we demonstrate a strategy of strengthening the connection between electrode and current collector by thermally alloying tin and copper at their interface.
View Article and Find Full Text PDFAlthough the high energy density and environmental benignancy of LiNi Co Al O (NCA) holds promise for use as cathode material in Li-ion batteries, present low rate capabilities, and fast capacity fade limit its broad commercial applications. Here, it is reported that surface modification of NCA cathode (R-3m) with 5 nm-thick nanopillar layers and Fm-3m structures significantly improves electrode structure, morphology, and electrochemical performance. The formation of nanopillar layers increases cycling and working voltage stability of NCA by shielding the host material from hydrofluoric acid and improves structural stability with the electrolyte.
View Article and Find Full Text PDFModern sustainability challenges in recent years have warranted the development of new energy storage technologies. Practical realization of the lithium-O battery holds great promise for revolutionizing energy storage as it holds the highest theoretical specific energy of any rechargeable battery yet discovered. However, the complete realization of Li-O batteries necessitates ambient air operations, which presents quite a few challenges, as carbon dioxide (CO ) and water (H O) contaminants introduce unwanted byproducts from side reactions that greatly affect battery performance.
View Article and Find Full Text PDF